Log in

Experimental pool boiling heat transfer analysis through novel ZnO-coated Cu (Cu@ZnO nanoparticle) hybrid nanofluid boiling on the fin tops of different microchannels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Open microchannels and micro/nanoporous coatings by nanofluid boiling have been used separately by earlier researchers to improve heat transfer during pool boiling. The combined impact of these factors is examined in this work by novel ZnO-coated Cu (Cu@ZnO) hybrid nanofluid boiling on the apex of microchannels’ fins, resulting in development of micro/nanoporous coatings on the apex of microchannels’ fins. The Cu@ZnO hybrid nanoparticles were prepared by optimal spark discharging in liquid nitrogen. The next phase involves dispersing the developed nanoparticles in DI water as the base fluid to achieve stable nanofluids. This article reports on the impact of microchannel geometry on the efficiency of heat transmission for water and hybrid nanofluid boiling on copper chips. A higher concentration of nanofluid with microchannel configuration enhanced the CHF and HTC throughout the pool boiling experiment. The highest increases in HTC and CHF were reported to be 287.57% and 123.60%, respectively, for 0.1% hybrid nanofluid on 300-µm microchannel. The mechanisms of bubble formation and heat transport are changed when nucleation occurs mostly on the fin tops. The present study’s theory is founded on the improved rewetting routes offered by microchannels and the extra nucleation spots offered by porous layers, both of which operate in concert to improve boiling behaviour. A microconvective process wherein highly localized liquid circulating currents are created in the microchannels by bubbles emerging from the tops of the fins. Additionally, a conceptual framework based on liquid microcirculation is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Data and materials will be provided on request.

References

  1. Alkharabsheh S, Fernandes J, Gebrehiwot B, Agonafer D, Ghose K, Ortega A, Joshi Y, Sammakia B. A brief overview of recent developments in thermal management in data centers. J Electron Packag. 2015;137:040801.

    Google Scholar 

  2. Zhu JF, Li XY, Wang SL, Yang YR, Wang XD. Performance comparison of wavy microchannel heat sinks with wavy bottom rib and side rib designs. Int J Therm Sci. 2019;146:106068.

    Google Scholar 

  3. Kheirabadi AC, Groulx D. Cooling of server electronics: a design review of existing technology. Appl Therm Eng. 2016;105:622–38.

    Google Scholar 

  4. Cao Z. Pool boiling on structured surfaces: heat transfer and critical heat flux experiments and mechanistic modelling. Doctor Dissertation, Lund University: Lund. 2019.

  5. Kuncoro IW, Pambudi NA, Biddinika MK, Widiastuti I, Hijriawan M, Wibowo KM. Immersion cooling as the next technology for data center cooling: a review. J Phys Conf Ser. 2019;1402:044057.

    CAS  Google Scholar 

  6. Gupta SK, Misra RD. Experimental pool boiling heat transfer analysis with copper-alumina micro/nanostructured surfaces developed by a novel electrochemical deposition technique. Int J Thermophys. 2023;44:112.

    CAS  Google Scholar 

  7. Birbarah P, Gebrael T, Foulkes T, Stillwell A, Moore A, Pilawa-Podgurski R, Miljkovic N. Water immersion cooling of high power density electronics. Int J Heat Mass Transf. 2020;147:118918.

    CAS  Google Scholar 

  8. Hsu YT, Li JX, Lu MC. Enhanced immersion cooling using two-tier micro- and nano-structures. Appl Therm Eng. 2018;131:864–73.

    CAS  Google Scholar 

  9. Wang Y, Pambudi NA, Bugis H, Kuncoro IW, Setiawan ND, Hijriawan M, Rudiyanto B, Basori B. Preliminary experimental of GPU immersion-cooling. E3S Web Conf. 2019;93:03003.

    Google Scholar 

  10. Ahangar Zonouzi S, Aminfar H, Mohammadpourfard M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Appl Therm Eng. 2019;151:11–25.

    CAS  Google Scholar 

  11. Bourdon B, Rioboo R, Marengo M, Gosselin E, Coninck JD. Influence of the wettability on the boiling onset. Langmuir. 2012;28:1618–24.

    PubMed  CAS  Google Scholar 

  12. Ze H, Wu F, Chen S, Gao X. Superhydrophilic composite structure of copper microcavities and nanocones for enhancing boiling heat transfer. Adv Mater Interfaces. 2020;7:2000482.

    CAS  Google Scholar 

  13. Xu P, Li Q, Xuan Y. Enhanced boiling heat transfer on composite porous surface. Int J Heat Mass Transf. 2015;80:107–14.

    Google Scholar 

  14. Wu F, Ze H, Chen S, Gao X. Highly-efficiency boiling heat transfer interface composed of electroplated copper nanocone cores and low-thermal-conductivity nickel nanocone covering. ACS Appl Mater Interfaces. 2020;12:39902–9.

    PubMed  CAS  Google Scholar 

  15. Li J, Fu W, Zhang B, Zhu G, Miljkovic N. Ultrascalable three-tier hierarchical nanoengineered surfaces for optimized boiling. ACS Nano. 2019;13:14080–93.

    PubMed  CAS  Google Scholar 

  16. Wu Z, Cao Z, Sunden B. Saturated pool boiling heat transfer ́ of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition. Appl Energy. 2019;249:286–99.

    CAS  Google Scholar 

  17. Cao Z, Wu Z, Sunden B. Heat transfer prediction and ́ critical heat flux mechanism for pool boiling of NOVEC-649 on microporous copper surfaces. Int J Heat Mass Transf. 2019;141:818–34.

    Google Scholar 

  18. El-Genk MS, Ali AF. Enhanced nucleate boiling on copper micro-porous surfaces. Int J Multiphase Flow. 2010;36:780–92.

    CAS  Google Scholar 

  19. Furberg R, Palm B. Boiling heat transfer on a dendritic and micro-porous surface in R134a and FC-72. Appl Therm Eng. 2011;31:3595–603.

    CAS  Google Scholar 

  20. White SB, Shih AJ, Pipe KP. Boiling surface enhancement by electrophoretic deposition of particles from a nanofluid. Int J Heat Mass Transf. 2011;54:4370–5.

    CAS  Google Scholar 

  21. Song G, Davies PA, Wen J, Xu G, Quan Y. Nucleate pool boiling heat transfer of SES36 fluid on nanoporous surfaces obtained by electrophoretic deposition of Al2O3. Appl Therm Eng. 2018;141:143–52.

    CAS  Google Scholar 

  22. Cao Z, Wu Z, Pham AD, Yang Y, Abbood S, Falkman P, Ruzgas T, Alber C, Sunde NB. Pool boiling of HFE-7200 on ́ nanoparticle-coating surfaces: experiments and heat transfer analysis. Int J Heat Mass Transf. 2019;133:548–60.

    CAS  Google Scholar 

  23. Cao Z, Wu Z, Pham AD, Sunden B. Electrophoretic ́ deposition surfaces to enhance HFE-7200 pool boiling heat transfer and critical heat flux. Int J Therm Sci. 2019;146:106107.

    CAS  Google Scholar 

  24. Zhao H, Dash S, Dhillon NS, Kim S, Lettiere B, Varanasi KK, Hart AJ. Microstructured ceramic-coated carbon nanotube surfaces for high heat flux pool boiling. ACS Appl Nano Mater. 2019;2:5538–45.

    CAS  Google Scholar 

  25. Jaikumar A, Gupta A, Kandlikar SG, Yang CY, Su CY. Scale effects of graphene and graphene oxide coatings on pool boiling enhancement mechanisms. Int J Heat Mass Transf. 2017;109:357–66.

    CAS  Google Scholar 

  26. Pratik KC, Nammari A, Ashton TS, Moore AL. Saturated pool boiling heat transfer from vertically oriented silicon surfaces modified with foam-like hexagonal boron nitride nanomaterials. Int J Heat Mass Transf. 2016;95:964–71.

    CAS  Google Scholar 

  27. Zou A, Poudel S, Raut PS, Maroo CS. Pool boiling coupled with nanoscale evaporation using buried nanochannels. Langmuir. 2019;35:12689–93.

    PubMed  CAS  Google Scholar 

  28. Prakash Chakrapani Gunarasan J, Ravindran P. Significance of chemical engineering in surface wettability tuning and its boiling hydrodynamics: a boiling heat transfer study. Ind Eng Chem Res. 2020;59:4210–8.

    CAS  Google Scholar 

  29. Ridwan S, McCarthy M. Nanostructure-supported evaporation underneath a growing bubble. ACS Appl Mater Interfaces. 2019;11:12441–51.

    PubMed  CAS  Google Scholar 

  30. Liu M, Lu K, Li X, Liu H, **g D. Light-induced enhancement of critical heat flux on TiO2 coatings with specific surface topology. Appl Therm Eng. 2020;174:115333.

    CAS  Google Scholar 

  31. Su CY, Yang CY, Jhang BW, Hsieh YL, Sin YY, Huang CC. Pool boiling heat transfer enhanced by fluorinated graphene as atomic layered modifiers. ACS Appl Mater Interfaces. 2020;12:10233–9.

    PubMed  CAS  Google Scholar 

  32. Moze M, Senegacnik M, Gregorcic P, Hocevar M, Zupancic M, Golobic I. Laser-engineered microcavity surfaces with a nanoscale superhydrophobic coating for extreme boiling performance. ACS Appl Mater Interfaces. 2020;12:24419–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Kong D, Kang M, Kim KY, Jang J, Cho J, In JB, Lee H. Hierarchically structured laser-induced graphene for enhanced boiling on flexible substrates. ACS Appl Mater Interfaces. 2020;12:37784–92.

    PubMed  CAS  Google Scholar 

  34. Liu B, Liu J, Zhou J, Yuan B, Zhang Y, Wei J, Wang W. Experimental study of subcooled boiling pool heat transfer and its “hook back” phenomenon on micro/nanostructured surfaces. Int Commun Heat Mass Transf. 2019;100:73–82.

    CAS  Google Scholar 

  35. Liu B, Cao Z, Zhang Y, Wu Z, Pham A, Wang W, Yan Z, Wei J, Sunden B. Pool boiling heat transfer of N-pentane on micro/nanostructured surfaces. Int J Therm Sci. 2018;130:386–94.

    CAS  Google Scholar 

  36. Chen R, Lu MC, Srinivasan V, Wang Z, Cho HH, Majumdar A. Nanowires for enhanced boiling heat transfer. Nano Lett. 2009;9:548–53.

    PubMed  Google Scholar 

  37. Shim DI, Choi G, Lee N, Kim T, Kim BS, Cho HH. Enhancement of pool boiling heat transfer using aligned silicon nanowire arrays. ACS Appl Mater Interfaces. 2017;9:17595–602.

    PubMed  CAS  Google Scholar 

  38. Shin S, Choi G, Rallabandi B, Lee D, Shim DI, Kim BS, Kim KM, Cho HH. Enhanced boiling heat transfer using self-actuated nanobimorphs. Nano Lett. 2018;18:6392–6.

    PubMed  CAS  Google Scholar 

  39. Kim DE, Park SC, Yu DI, Kim MH, Ahn HS. Enhanced critical heat flux by capillary driven liquid flow on the welldesigned surface. Appl Phys Lett. 2015;107:023903.

    Google Scholar 

  40. Rahman MM, Ridwan S, Fehlinger D, McCarthy M. Wicking enhanced critical heat flux for highly wetting fluids on structured surfaces. Langmuir. 2020;36:9643–8.

    PubMed  CAS  Google Scholar 

  41. Liu B, Yu L, Zhang Y, Marco PD, Wei J. Enhanced nucleate pool boiling by coupling the pinning act and cluster bubble nucleation of micro-nano composited surfaces. Int J Heat Mass Transfer. 2020;157:119979.

    Google Scholar 

  42. Kim DE, Yu DI, Park SC, Kwak HJ, Ahn HS. Critical heat flux triggering mechanism on micro-structured surfaces: coalesced bubble departure frequency and liquid furnishing capability. Int J Heat Mass Transf. 2015;91:1237–47.

    CAS  Google Scholar 

  43. Zou A, Singh PD, Maroo CS. Early evaporation of microlayer for boiling heat transfer enhancement. Langmuir. 2016;32:10808–14.

    PubMed  CAS  Google Scholar 

  44. Chu KH, Enright R, Wang EN. Structured surfaces for enhanced pool boiling heat transfer. Appl Phys Lett. 2012;100:241603.

    Google Scholar 

  45. Zhou J, Liu B, Qi B, Wei J, Mao H. Experimental investigations of bubble behaviors and heat transfer performance on micro/nanostructure surfaces. Int J Therm Sci. 2019;135:133–47.

    CAS  Google Scholar 

  46. Cooke D, Kandlikar SG. Effect of open microchannel geometry on pool boiling enhancement. Int J Heat Mass Transf. 2012;55(4):1004–13.

    Google Scholar 

  47. You SM, Kim JH, Kim KH. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett. 2003;83(16):3374–6.

    CAS  Google Scholar 

  48. Forrest E, Williamson E, Buongiorno J, Hu LW, Rubner M, Cohen R. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int J Heat Mass Transf. 2010;53:58–67.

    CAS  Google Scholar 

  49. Kalani A, Kandlikar SG. Enhanced pool boiling with ethanol at subatmospheric pressures for electronics cooling. J Heat Transf. 2013;135:11.

    Google Scholar 

  50. Rainey KN, You SM, Lee S. Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous, square pin-finned surfaces in FC-72. Int J Heat Mass Transf. 2003;46:23–35.

    CAS  Google Scholar 

  51. Patil CM, Santhanam KSV, Kandlikar SG. Development of a two-step electrodeposition process for enhancing pool boiling. Int J Heat Mass Transf. 2014;79:989–1001.

    Google Scholar 

  52. Patil CM, Kandlikar SG. Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels. Int J Heat Mass Transf. 2014;79:816–28.

    Google Scholar 

  53. Kabbara H, Ghanbaja J, Noël C, Belmonte T. Synthesis of Cu@ZnO core–shell nanoparticles by spark discharges in liquid nitrogen. Nano-Struct Nano-Objects. 2017;10:22–9.

    CAS  Google Scholar 

  54. Barewar SD, Chougule SS, Jadhav J, Biswas S. Synthesis and thermo-physical properties of water-based novel Ag/ZnO hybrid nanofuids. J Therm Anal Calorim. 2018;134:1493–504.

    CAS  Google Scholar 

  55. Gupta SK, Misra RD. An experimental investigation on pool boiling heat transfer enhancement using Cu–Al2O3 nano-composite coating. Experimental Heat Transf. 2019;32(2):133–58.

    CAS  Google Scholar 

  56. Gupta SK, Misra RD. Experimental study of pool boiling heat transfer on copper surfaces with Cu–Al2O3 nanocomposite coatings. Int Commun Heat Mass Transf. 2018;97:47–55.

    CAS  Google Scholar 

  57. Holman JP. Experimental methods for engineers. 7th ed. Tata McGraw Hill Education Private Limited; 2007.

    Google Scholar 

  58. Rohsenow WM. A method of correlating heat transfer data for surface boiling of liquids. ASME. 1952;74:969–76.

    CAS  Google Scholar 

  59. Xu J, Gan Y, Zhang D, Li X. Microscale boiling heat transfer in a micro-timescale at high heat fluxes. J Micromech Microeng. 2005;15:362–76.

    CAS  Google Scholar 

  60. Wei JJ, Honda H. Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72. Int J Heat Mass Transf. 2003;46:4059–70.

    CAS  Google Scholar 

  61. Kong X, Zhang Y, Wei J. Experimental study of pool boiling heat transfer on novel bistructured surfaces based on micro-pin-finned structure. Exp Therm Fluid Sci. 2018;91:9–19.

    CAS  Google Scholar 

  62. Sarangi S, Weibel JA, Garimella SV. Quantitative evaluation of the dependence of pool boiling heat transfer enhancement on sintered particle coating characteristics. J Heat Transf. 2017;139:021502.

    Google Scholar 

  63. Cooke D, Kandlikar SG. Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels. J Heat Transf. 2011;133(5):052902.

    Google Scholar 

  64. Das S, Kumar DS, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Appl Therm Eng. 2016;96:555–67.

    CAS  Google Scholar 

  65. Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure. Appl Therm Eng. 2017;113:1345–57.

    CAS  Google Scholar 

  66. Kwark SM, Kumar R, Moreno G, Yoo J, You SM. Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf. 2010;53:972–81.

    CAS  Google Scholar 

  67. Betz AR, Xu J, Qiu H, Attinger D. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl Phys Lett. 2010;97:141909.

    Google Scholar 

  68. Bo S, Yi-Biao W, Kai C. Pool boiling heat transfer enhancement with copper nanowire arrays. Appl Therm Eng. 2015;75:115–21.

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge to Add Nano Synthesis Lab, Bangalore, India, for providing material synthesis facility, and NIT, Silchar, India, for financial support.

Funding

This project was not funded.

Author information

Authors and Affiliations

Authors

Contributions

G involved in problem identification, experimentation, and main manuscript drafting; M involved in mentoring this work and manuscript drafting.

Corresponding author

Correspondence to Sanjay Kumar Gupta.

Ethics declarations

Conflict of interest

There are no disclosed conflicts of interest for the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Misra, R.D. Experimental pool boiling heat transfer analysis through novel ZnO-coated Cu (Cu@ZnO nanoparticle) hybrid nanofluid boiling on the fin tops of different microchannels. J Therm Anal Calorim 148, 12247–12267 (2023). https://doi.org/10.1007/s10973-023-12462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12462-0

Keywords

Navigation