Log in

Simultaneous use of TiO2/oil nanofluid and metallic-insert as enhancement of an evacuated tube solar water heater

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar water heaters represent a crucial component of sustainable energy systems, offering the potential to reduce energy costs and limit carbon emissions. This study focuses on the investigation of energy and exergy efficiency enhancement in evacuated tube solar water heaters deployed in the hot climate of Dezful, Iran. Specifically, the study evaluates the impact of engine-oil as a circulation fluid within copper U-tubes positioned inside evacuated tubes, with the addition of TiO2 nanoparticles in two concentrations (0.2 mass% and 0.4 mass%). Additionally, the study assesses the effectiveness of a metallic twisted tape insert within the U-tubes to augment the heat transfer rate, with the aim of improving the overall efficiency and performance of the system. In the assessments, the thermal efficiency diagram was divided by three phases and the behavior of each one was elaborated. As results, employing metallic-insert leads to 1.5 °C more water temperature. Moreover, 5.6 °C difference between 0.4 mass% TiO2 + insert and the base case was observed in the evening which results in 24.4% and 25.52% higher thermal efficiency and exergy efficiency, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C p :

Specific heat (J kg1 K1)

EX:

Exergy (W)

G :

Solar irradiation (W m2)

P :

Power (W)

\(\dot{{\varvec{Q}}}\) :

Heat emitted to the surrounding (W)

S :

Entropy generation (W K1)

T :

Temperature (°C)

V :

Voltage (V)

ΔT :

Temperature difference (°C)

\(\dot{m}\) :

Flow rate of circulating nanofluid (kg s−1)

f :

Fluid

\(\eta\) :

Energy efficiency (%)

\(\Psi\) :

Exergy efficiency (%)

\(\rho\) :

Density (kg m−3)

\(\phi\) :

Mass concentration (%)

amb:

Ambient

i:

Input

o:

Output

sun:

Sun

th:

Thermal

sky:

Sky

el:

Electrical

Lost:

Lost

gen:

Generation

pump:

Pump

np:

Nano particle

nf:

Nanofluid

bf:

Base fluid

References

  1. IRENA. International Renewable Energy Agency, Available in: https://www.irena.org. 2021.

  2. IRENA. Renewable power generation costs in 2021, Available in: https://www.irena.org. 2022.

  3. Assareh E, Jafarian M, Nedaei M, Firoozzadeh M, Lee M. Performance evaluation and optimization of a photovoltaic/thermal (PV/T) system according to climatic conditions. Energies. 2022;15(20):7489.

    Article  Google Scholar 

  4. Firoozzadeh M, Lotfi M, Shiravi AH, Rajabzadeh Dezfuli M. An experimental study on using water streaks and water film over PV module to enhance the electrical efficiency. Environ Sci Pollut Res. 2023:1–13.

  5. Steinmann W-D. Concentrating solar power plants. In: Steinmann W-D, editor. Thermal energy storage for medium and high temperatures: concepts and applications. Wiesbaden: Springer Fachmedien Wiesbaden; 2022. p. 273–302.

    Chapter  Google Scholar 

  6. Mokheimer EM, Shakeel MR, Al-Sadah J. A novel design of solar chimney for cooling load reduction and other applications in buildings. Energy Build. 2017;153:219–30.

    Article  Google Scholar 

  7. Arzpeyma M, Mekhilef S, Newaz KMS, Horan B, Seyedmahmoudian M, Akram N, et al. Solar chimney power plant and its correlation with ambient wind effect. J Therm Anal Calorim. 2020;141(2):649–68.

    Article  CAS  Google Scholar 

  8. Fudholi A, Sopian K, Othman MY, Ruslan MH. Energy and exergy analyses of solar drying system of red seaweed. Energy Build. 2014;68:121–9.

    Article  Google Scholar 

  9. Bazregari MJ, Norouzi N, Gholinejad M, Khavasi E, Fani M. A 2E analysis and optimization of a hybrid solar humidification-dehumidification water desalination system and solar water heater. Iran J Chem Chem Eng (IJCCE). 2021.

  10. Kabeel AE, Sathyamurthy R, El-Agouz SA, Muthu Manokar A, El-Said EMS. Experimental studies on inclined PV panel solar still with cover cooling and PCM. J Therm Anal Calorim. 2019;138(6):3987–95. https://doi.org/10.1007/s10973-019-08561-6.

    Article  CAS  Google Scholar 

  11. Tibebu S, Hailu A. Design, construction, and evaluation of the performance of dual-axis sun trucker parabolic solar cooker and comparison of cooker. J Renew Energy. 2021;2021:1–10.

    Article  Google Scholar 

  12. Namin AS, Rostamzadeh H, Nourani P. Thermodynamic and thermoeconomic analysis of three cascade power plants coupled with RO desalination unit, driven by a salinity-gradient solar pond. Therm Sci Eng Progr. 2020;18: 100562.

    Article  Google Scholar 

  13. Sathish D, Jegadheeswaran S. Evolution and novel accomplishments of solar pond, desalination and pond coupled to desalination systems: a review. J Therm Anal Calorim. 2021;146(5):1923–69.

    Article  CAS  Google Scholar 

  14. Sharma A, Bharadwaj G, Varun. Heat transfer and friction factor correlation development for double-pass solar air heater having V-shaped ribs as roughness elements. Exp Heat Transfer. 2017;30(1):77–90.

  15. Azimy N, Saffarian MR, Noghrehabadi A. Thermal performance analysis of a flat-plate solar heater with zigzag-shaped pipe using fly ash-Cu hybrid nanofluid: CFD approach. Environ Sci Pollut Res. 2022:1–19.

  16. Kumar PM, Mylsamy K. Experimental investigation of solar water heater integrated with a nanocomposite phase change material. J Therm Anal Calorim. 2019;136(1):121–32.

    Article  Google Scholar 

  17. Moravej M, Doranehgard MH, Razeghizadeh A, Namdarnia F, Karimi N, Li LK, et al. Experimental study of a hemispherical three-dimensional solar collector operating with silver-water nanofluid. Sustain Energy Technol Assess. 2021;44: 101043.

    Google Scholar 

  18. Butti K, Perlin J. Early solar water heaters, a golden thread. New York: Van Nostrand Reinhold Company; 1979.

    Google Scholar 

  19. Shukla A, Buddhi D, Sawhney R. Solar water heaters with phase change material thermal energy storage medium: a review. Renew Sustain Energy Rev. 2009;13(8):2119–25.

    Article  CAS  Google Scholar 

  20. Avargani VM, Norton B, Rahimi A, Karimi H. Integrating paraffin phase change material in the storage tank of a solar water heater to maintain a consistent hot water output temperature. Sustain Energy Technol Assess. 2021;47: 101350.

    Google Scholar 

  21. Fazilati MA, Alemrajabi AA. Phase change material for enhancing solar water heater, an experimental approach. Energy Convers Manage. 2013;71:138–45.

    Article  CAS  Google Scholar 

  22. Sadeghi G, Safarzadeh H, Ameri M. Experimental and numerical investigations on performance of evacuated tube solar collectors with parabolic concentrator, applying synthesized Cu2O/distilled water nanofluid. Energy Sustain Dev. 2019;48:88–106.

    Article  Google Scholar 

  23. Avargani VM, Rahimi A, Divband M. Coupled optical and thermal analyses of a new type of solar water heaters using parabolic trough reflectors. Sustain Energy Technol Assess. 2020;40: 100780.

    Google Scholar 

  24. **ong Q, Altnji S, Tayebi T, Izadi M, Hajjar A, Sundén B, et al. A comprehensive review on the application of hybrid nanofluids in solar energy collectors. Sustain Energy Technol Assess. 2021;47: 101341.

    Google Scholar 

  25. Michael JJ, Iniyan S. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Convers Manage. 2015;95:160–9.

    Article  CAS  Google Scholar 

  26. Suthahar SJ, Sakthivel C, Vijayan V, Yokeshwaran R. Performance analysis of solar water heater by using TiO2 nanofluids. Mater Today Proc. 2020;21:817–9.

    Article  Google Scholar 

  27. Arun M, Barik D, Sridhar K, Vignesh G. Performance analysis of solar water heater using Al2O3 nanoparticle with plain-dimple tube design. Exp Tech. 2022:1–14.

  28. Valiallah Mousavi S, Barzegar Gerdroodbary M, Sheikholeslami M, Ganji D. The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel. Eur Phys J Plus. 2016;131:1–12.

    Article  CAS  Google Scholar 

  29. Biswas N, Mondal MK, Mandal DK, Manna NK, Gorla RSR, Chamkha AJ. A narrative loom of hybrid nanofluid-filled wavy walled tilted porous enclosure imposing a partially active magnetic field. Int J Mech Sci. 2022;217: 107028.

    Article  Google Scholar 

  30. Biswas N, Mondal MK, Manna NK, Mandal DK, Chamkha AJ. Implementation of partial magnetic fields to magneto-thermal convective systems operated using hybrid-nanoliquid and porous media. Proc Inst Mech Eng C J Mech Eng Sci. 2022;236(10):5687–704.

    Article  CAS  Google Scholar 

  31. Biswas N, Mandal DK, Manna NK, Gorla RSR, Chamkha AJ. Magnetohydrodynamic thermal characteristics of water-based hybrid nanofluid-filled non-Darcian porous wavy enclosure: effect of undulation. Int J Numer Meth Heat Fluid Flow. 2022;32(5):1742–77.

    Article  Google Scholar 

  32. Tajik J-A. Experimental investigation on the effect of partially metal foam inside the absorber of parabolic trough solar collector. Int J Eng. 2017;30(2):281–7.

    Google Scholar 

  33. Munuswamy DB, Devarajan Y, Babu MN, Ramalingam S. Experimental investigation on lowering the environmental hazards and improving the performance patterns of solar flat plate collectors by employing the internal longitudinal fins and nano additives. Environ Sci Pollut Res. 2020;27(36):45390–404.

    Article  CAS  Google Scholar 

  34. Firoozzadeh M, Shafiee M. Thermodynamic analysis on using titanium oxide/oil nanofluid integrated with porous medium in an evacuated tube solar water heater. J Therm Anal Calorim. 2023.

  35. Saxena A, Norton B. Adoption potential, thermal engineering and economic viability of solar water heating systems. 2021.

  36. Vengadesan E, Senthil R. A review on recent development of thermal performance enhancement methods of flat plate solar water heater. Sol Energy. 2020;206:935–61.

    Article  Google Scholar 

  37. Fayzi P, Bastani D, Lotfi M. A note on the synergistic effect of surfactants and nanoparticles on rising bubble hydrodynamics. Chem Eng Process Process Intensif. 2020;155: 108068.

    Article  CAS  Google Scholar 

  38. Jafari V, Allahverdi A. Synthesis and characterization of colloidal nanosilica via an ultrasound assisted route based on alkali leaching of silica fume. Int J Nanosci Nanotechnol. 2014;10(3):145–52.

    Google Scholar 

  39. Khazaei A, Nazari S, Karimi G, Ghaderi E, Mansouri Moradian K, Bagherpor Z. Synthesis and characterization of γ-alumina porous nanoparticles from sodium aluminate liquor with two different surfactants. Int J Nanosci Nanotechnol. 2016;12(4):207–14.

    Google Scholar 

  40. Yang L, Mao M, Huang J-N, Ji W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol. 2019;356:335–41.

    Article  CAS  Google Scholar 

  41. Lotfi M, Firoozzadeh M, Shiravi AH, Sharipova A. An experimental study on convective heat transfer and pressure drop during the movement of TiO2/water nanofluid through a helical coiled path. J Therm Anal Calorim. 2023:1–13.

  42. Firoozzadeh M, Lotfi M, Shiravi AH. An experimental study on simultaneous use of metal fins and mirror to improve the performance of photovoltaic panels. Sustainability. 2022;14:16986.

    Article  CAS  Google Scholar 

  43. Mishra D, Jain H, Kumar N, Sodha MS. Experimental evaluation of solar integrated water heater. Sci Iran. 2020;27(4):1878–85.

    Google Scholar 

  44. PraveenKumar S, Agyekum EB, Velkin VI, Yaqoob SJ, Adebayo TS. Thermal management of solar photovoltaic module to enhance output performance: an experimental passive cooling approach using discontinuous aluminum heat sink. Int J Renew Energy Res (IJRER). 2021;11(4):1700–12.

    Google Scholar 

  45. Tayebi T, Chamkha AJ, Djezzar M. Natural convection of CNT-water nanofluid in an annular space between confocal elliptic cylinders with constant heat flux on inner wall. Sci Iran. 2019;26(5):2770–83.

    Google Scholar 

  46. Saffarian MR, Moravej M, Doranehgard MH. Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew Energy. 2020;146:2316–29.

    Article  CAS  Google Scholar 

  47. Petela R. Exergy of heat radiation. 1964.

  48. Firoozzadeh M, Shiravi AH, Hodaei S. An experimental approach on employing air flow through a porous medium as coolant of photovoltaic module: thermodynamics assessment. Therm Sci Eng Progr. 2023;40: 101799.

    Article  Google Scholar 

  49. Shiravi AH, Firoozzadeh M, Passandideh-Fard M. A modified exergy evaluation of using carbon-black/water/EG nanofluids as coolant of photovoltaic modules. Environ Sci Pollut Res. 2022;29(38):57603–17.

    Article  CAS  Google Scholar 

  50. Chow TT, Pei G, Fong K, Lin Z, Chan A, Ji J. Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover. Appl Energy. 2009;86(3):310–6.

    Article  Google Scholar 

  51. Yazdanifard F, Ameri M. Exergetic advancement of photovoltaic/thermal systems (PV/T): a review. Renew Sustain Energy Rev. 2018;97:529–53.

    Article  Google Scholar 

  52. Shiravi AH, Firoozzadeh M. Performance assessment of a finned photovoltaic module exposed to an air stream; an experimental study. J Braz Soc Mech Sci Eng. 2022;44(11):535.

    Article  Google Scholar 

  53. Mahian O, Kianifar A, Kleinstreuer C, Moh’d AA-N, Pop I, Sahin AZ, et al. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013;65:514–32.

    Article  CAS  Google Scholar 

  54. Firoozzadeh M, Shiravi AH. Simultaneous use of porous medium and phase change material as coolant of photovoltaic modules; thermodynamic analysis. J Energy Storage. 2022;54:105276. https://doi.org/10.1016/j.est.2022.105276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ML: Supervision, Funding acquisition, Project administration, Writing-Review & Editing. MF: Methodology, Writing-Original Draft, Visualization. MA-S: Investigation, Visualization.

Corresponding author

Correspondence to Marzieh Lotfi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, M., Firoozzadeh, M. & Ali-Sinaei, M. Simultaneous use of TiO2/oil nanofluid and metallic-insert as enhancement of an evacuated tube solar water heater. J Therm Anal Calorim 148, 9633–9647 (2023). https://doi.org/10.1007/s10973-023-12339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12339-2

Keywords

Navigation