Log in

Thermal conductivity, viscosity, and density of deep eutectic solvents containing choline chloride and triethylene glycol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

As a new type of green solvent, deep eutectic solvents (DESs) are regarded as substitutes for ionic liquids in various applications, so the study of thermophysical properties of DESs is of great importance for their applications. In this work, DESs containing triethylene glycol as hydrogen bonding donor and choline chloride (ChCl) as hydrogen bond acceptor were synthesized in a series of molar ratios, and the thermal conductivity, viscosity, and density were investigated systematically. The addition of ChCl suppresses the thermal conductivity of DESs, but increases the viscosity and density, and the mechanism of the dependence of the thermophysical properties on the molar fraction is analyzed. The increase in the temperature always causes a decrease in the viscosity and density, while the thermal conductivity and temperature show a parabola dependence. Besides, the increase in the pressure results in the enhancement of thermal conductivity. Moreover, the thermophysical properties of DESs are fitted into correlations, and the AADs and MDs from fitted values and experimental data are 0.39% and 2.14% for thermal conductivity, 1.34% and 2.49% for viscosity, and 0.04% and 0.11% for density, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang J, Zhang X, Yang M, Singh S, Cheng G. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. Bioresource Technol. 2021;322: 124522.

    Article  CAS  Google Scholar 

  2. Zhu C, Xue S, Ikram R, Liu X, He M. Experimental study on isobaric molar heat capacities of a deep eutectic solvent: choline chloride+ethylene glycol. J Chem Eng Data. 2020;65(2):690–5.

    Article  CAS  Google Scholar 

  3. Leron RB, Li MH. Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water. Thermochim Acta. 2012;530:52–7.

    Article  CAS  Google Scholar 

  4. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Chem Commun. 2003;1:70–1.

    Article  Google Scholar 

  5. Achkar TE, Greige-Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environ Chem Lett. 2021;19(4):3397–408.

    Article  Google Scholar 

  6. **ao Y, Bao Y, Yu L, Zheng X, Qin G, Chen M, He M. Ultra-stable carbon quantum dot nanofluids as excellent spectral beam splitters in PV/T applications. Energy. 2023;273: 127159.

    Article  CAS  Google Scholar 

  7. Abbott AP, Capper G, Davies DL, McKenzie KJ, Obi SU. Solubility of metal oxides in deep eutectic solvents based on choline chloride. J Chem Eng Data. 2006;51(4):1280–2.

    Article  CAS  Google Scholar 

  8. Alam MA, Muhammad G, Khan MN, Mofijur M, Lv Y, **ong W, Xu J. Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. J Clean Prod. 2021;309: 127445.

    Article  CAS  Google Scholar 

  9. Liu C, Fang H, Liu X, Xu B, Rao Z. Novel silica filled deep eutectic solvent based nanofluids for energy transportation. ACS Sustain Chem Eng. 2019;7(24):20159–69.

    Article  CAS  Google Scholar 

  10. Gao J, Yu W, **e H, Mahian O. Graphene-based deep eutectic solvent nanofluids with high photothermal conversion and high-grade energy. Renew Energy. 2022;190:935–44.

    Article  CAS  Google Scholar 

  11. Zheng X, Qu D, Zhang F, Liu Y, Qin G. Measurements and calculations of thermal conductivity for liquid n-octane and n-decane. Fluid Phase Equilibr. 2021;533: 112940.

    Article  CAS  Google Scholar 

  12. Assael MJ, Metaxa IN, Kakosimos K, Constantinou D. Thermal conductivity of nanofluids-experimental and theoretical. Int J Thermophys. 2006;27(4):999–1017.

    Article  CAS  Google Scholar 

  13. Liu Y, Zheng X, Li Q. Modeling heat capacity of liquid hydrofluorocarbons and hydrofluoroolefins. J Mol Liq. 2021;344: 117734.

    Article  CAS  Google Scholar 

  14. Zhang Z, Hou K, Xue S, Zhou Y, Liu X, He M. Measurement and correlation of isobaric molar heat capacities of deep eutectic solvents consisting of choline chloride and triethylene glycol. J Mol Liq. 2022;366: 120229.

    Article  CAS  Google Scholar 

  15. Naser J, Mjalli FS, Gano ZS. Molar heat capacity of selected type III deep eutectic solvents. J Chem Eng Data. 2016;61(4):1608–15.

    Article  CAS  Google Scholar 

  16. Hayyan M, Aissaoui T, Hashim MA, AlSaadi MA, Hayyan A. Triethylene glycol based deep eutectic solvents and their physical properties. J Taiwan Inst Chem Eng. 2015;50:24–30.

    Article  CAS  Google Scholar 

  17. Mjalli FS, Ahmad O. Density of aqueous choline chloride-based ionic liquids analogues. Thermochim Acta. 2017;647:8–14.

    Article  CAS  Google Scholar 

  18. Li G, Deng D, Chen Y, Shan H, Ai N. Solubilities and thermodynamic properties of CO2 in choline-chloride based deep eutectic solvents. J Chem Thermodyn. 2014;75:58–62.

    Article  CAS  Google Scholar 

  19. Zheng X, Bao Y, Qu D, Wu J, Qin G, Liu Y. Thermal conductivity measurements for long-chain n-alkanes at evaluated temperature and pressure: n-dodecane and n-tetradecane. J Chem Thermodyn. 2021;162: 106566.

    Article  CAS  Google Scholar 

  20. Zheng X, Bao Y, Qu D, Liu Y, Qin G. Measurement and modeling of thermal conductivity for short chain methyl esters: methyl butyrate and methyl caproate. J Chem Thermodyn. 2021;159: 106486.

    Article  CAS  Google Scholar 

  21. Zheng X, Qu D, Bao Y, Qin G, Liu Y, Luo Q. Experimental studies of thermal conductivity of three biodiesel compounds: methyl pentanoate, methyl octanoate, and methyl decanoate. J Chem Eng Data. 2021;67(1):45–53.

    Article  Google Scholar 

  22. Zheng X, Huang A, Bao Y, Wang S, Qin G, Liu Y. Measurement of the thermal conductivity of the components of biodiesels: methyl laurate and methyl myristate. Fluid Phase Equilibr. 2022;556: 113409.

    Article  CAS  Google Scholar 

  23. Qu D, Cheng L, Bao Y, Gao Y, Zheng X, Qin G. Enhanced optical absorption and solar steam generation of CB-ATO hybrid nanofluids. Renew Energy. 2022;199:509–16.

    Article  CAS  Google Scholar 

  24. Zheng X, Bao Y, Huang A, Qin G, He M. 3D printing double-layer hydrogel evaporator with surface structures for efficient solar steam generation. Sep Purif Technol. 2023;306: 122741.

    Article  CAS  Google Scholar 

  25. Singh A, Walvekar R, Khalid M, Wong WY, Gupta TCSM. Thermophysical properties of glycerol and polyethylene glycol (PEG 600) based DES. J Mol Liq. 2018;252:439–44.

    Article  CAS  Google Scholar 

  26. Bridgman PW. The thermal conductivity of liquids. P Natl Acad Sci USA. 1923;9:341.

    Article  CAS  Google Scholar 

  27. Gautam RK, Seth D. Thermal conductivity of deep eutectic solvents. J Therm Anal Calorim. 2020;140(6):2633–40.

    Article  CAS  Google Scholar 

  28. DiGuilio R, Teja AS. Thermal conductivity of poly (ethylene glycols) and their binary mixtures. J Chem Eng Data. 1990;35(2):117–21.

    Article  CAS  Google Scholar 

  29. Liu Y, Chen Y, **ng Y. Synthesis and characterization of novel ternary deep eutectic solvents. Chin Chem Lett. 2014;25(1):104–6.

    Article  CAS  Google Scholar 

  30. Li X, Kang K, Gu Y, Wang X. Viscosity prediction of pure refrigerants applying the residual entropy scaling theory coupled with a “generalized chart” parametrization method for the statistical associating fluid theory. J Mol Liq. 2022;367: 120479.

    Article  CAS  Google Scholar 

  31. Alomar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA. Glycerolbased deep eutectic solvents: physical properties. J Mol Liq. 2016;15:98–103.

    Article  Google Scholar 

  32. Liu Y, Zheng X, Liu C, Lv S. Modeling of compressed liquid viscosity of hydrofluorocarbons, hydrofluoroolefins, hydrochlorofluoroolefins, hydrochlorofluorocarbons and their mixtures. J Mol Liq. 2022;357: 119093.

    Article  CAS  Google Scholar 

  33. Lee RJ, Teja AS. Viscosities of poly(ethylene glycols). J Chem Eng Data. 1990;35:385–7.

    Article  CAS  Google Scholar 

  34. Protsenko VS, Kityk AA, Shaiderov DA, Danilov FI. Effect of water content on physicochemical properties and electrochemical behavior of ionic liquids containing choline chloride, ethylene glycol and hydrated nickel chloride. J Mol Liq. 2015;212:716–22.

    Article  CAS  Google Scholar 

  35. Kang K, Wang X. Liquid densities for n-decane+ p-xylene mixtures from 293.15 K to 363.15 K at pressures up to 60 MPa. Fluid Phase Equilibr. 2018;458:142–52.

    Article  CAS  Google Scholar 

  36. Abbott AP, Harris RC, Ryder KS. Application of hole theory to define ionic liquids by their transport properties. J Phys Chem B. 2007;111(18):4910–3.

    Article  CAS  PubMed  Google Scholar 

  37. Sagdeev DI, Fomina MG, Mukhamedzyanov GK, Abdulagatov IM. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 465 K and at high pressures up to 245 MPa. Fluid Phase Equilibr. 2012;315:64–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (52006059).

Author information

Authors and Affiliations

Authors

Contributions

WT was involved in conceptualization, methodology, and writing-original draft. YX and BZ were responsible for validation and resources. GQ carried out formal analysis. XZ contributed to writing—reviewing and editing, conceptualization, and supervising.

Corresponding author

Correspondence to **ong Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., **ao, Y., Zhou, B. et al. Thermal conductivity, viscosity, and density of deep eutectic solvents containing choline chloride and triethylene glycol. J Therm Anal Calorim 148, 7259–7267 (2023). https://doi.org/10.1007/s10973-023-12210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12210-4

Keywords

Navigation