Log in

Multi-objective optimization design of a planar membrane humidifier based on NSGA-II and entropy weight TOPSIS

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The external humidifier plays an important role in regulating the internal water content and improving the output efficiency of the fuel cells. In the current study, parameter influence research and multi-objective optimization were carried out on the planar membrane humidifier. The length, width, and height of the flow channel and the thickness, porosity, and acid equivalent concentration of the membrane were specified as design variables; the humidification capacity, pressure loss, and volume were set as the optimization objectives. Based on the detailed numerical simulation results, the radial basis function (RBF) meta-model combined with the non-dominated sorting genetic algorithm II (NSGA-II) was employed to approximate the performance of the humidifier and search for the Pareto fronts. Then, the optimal point was selected by the technique of order preference similarity to the ideal solution (TOPSIS) with entropy weight. The validated results showed that the RBF meta-model can achieve high-precision fitting of the performance of humidifiers. It was also found that the channel geometry factors were the most significant design variables for humidifier performance, far exceeding the impacts of membrane-related parameters. In this paper, the influence of geometric parameters and material parameters on the planar membrane humidifier was comprehensively studied, and a complete process of multi-objective optimization was proposed, guiding for determining the design parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Water activity (−)

C :

Species concentration (kg m−3)

\(C_{{{\text{acid}}}}\) :

Acid equivalent concentration (mol m−3)

Cp :

Specific heat (J kg−1 K−1)

D :

Species diffusivity (m2 s−1)

E W :

Equivalent weight (kg mol−1)

H :

Channel height (m)

k :

Thermal conductivity (W m−2 K1)

K :

Membrane permeability of (m2)

L :

Channel length (m)

\(\mathop m\limits^{ \bullet }\) :

Mass flow rate (kg s−1)

p :

Pressure (Pa)

R :

Universal gas constant (J mol−1 K−1)

\(R_{{{\text{adj}}}}^{2}\) :

Adjusted coefficient of determination

\(r_{xy}\) :

Correlation coefficient

\({\text{S}}\) :

Source term (kg m−2 s−2)

S x , S y , S z :

Momentum equation source terms (kg m−2 s−2)

T :

Temperature (K)

t :

Membrane thickness (m)

u, v, w :

Flow velocity components (m s−1)

\({\mathbf{V}}\) :

Flow velocity (m s−1)

W :

Channel width (m)

ANOVA:

Analysis of Variance

GDL:

Gas Diffusion Layer

MOPSO:

Multi-Objective Particle Swarm Optimization

NSGA:

Non-dominated Sorting Genetic Algorithm

PSO:

Particle Swarm Optimization

RBF:

Radial Basis Function

RSM:

Response surface methodology

SIMPLE:

Semi-Implicit Method for Pressure Linked Equations

SQP:

Sequential Quadratic Programming

TOPSIS:

Technique of Order Preference Similarity to the Ideal Solution

\(\lambda\) :

Water content in membrane (−)

\(\varepsilon\) :

Membrane porosity ()

\(\mu\) :

Dynamic viscosity (N s m−2)

\(\rho\) :

Density (kg m−3)

\(\varphi\) :

Relative humidity (−)

\(\omega\) :

Weight factor (−)

0:

Standard condition

c h :

Channel

dry :

Dry channel

eff :

Effective value

i :

Index of species or samples

in :

Inlet

m :

Membrane

o pe :

Operational

out:

Outlet

sat :

Saturation

w :

Water

wet :

Wet channel

References

  1. Lebrouhi BE, Djoupo JJ, Lamrani B, Benabdelaziz K, Kousksou T. Global hydrogen development-A technological and geopolitical overview. Int J Hydrogen Energy. 2022;47(11):7016–48.

    CAS  Google Scholar 

  2. Peighambardoust SJ, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy. 2010;35(17):9349–84.

    CAS  Google Scholar 

  3. Huizing R. (2007) Design and Membrane Selection for Gas to Gas Humidifiers for Fuel Cell Applications, Masters Abstracts International. 46–03: 1613

  4. Sopian K, Daud WRW. Challenges and future developments in proton exchange membrane fuel cells. Renew Energy. 2006;31(5):719–27.

    CAS  Google Scholar 

  5. Chen H, Zhao X, Zhang T, Pei P. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: a review. Energy Convers Manag. 2019;182:282–98.

    CAS  Google Scholar 

  6. Ebrahimzadeh AA, Khazaee I, Fasihfar A. Experimental and numerical investigation of obstacle effect on the performance of PEM fuel cell. Int J Heat Mass Transf. 2019;141:891–904.

    CAS  Google Scholar 

  7. Singh R, Oberoi AS, Singh T. Factors influencing the performance of PEM fuel cells: A review on performance parameters, water management, and cooling techniques. Int J Energy Res. 2022;46(4):3810–42.

    Google Scholar 

  8. Liu Q, Lan F, Chen J, Zeng C, Wang J. A review of proton exchange membrane fuel cell water management: membrane electrode assembly. J Power Sources. 2022;517: 230723.

    CAS  Google Scholar 

  9. Okonkwo PC, Ben Belgacem I, Emori W, Uzoma PC. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: a review. Int J Hydrogen Energy. 2021;46(55):27956–73.

    CAS  Google Scholar 

  10. Askaripour H. Effect of operating conditions on the performance of a PEM fuel cell. Int J Heat Mass Transf. 2019;144: 118705.

    CAS  Google Scholar 

  11. Okonkwo PC, Otor C. A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system. Int J Energy Res. 2021;45(3):3780–800.

    CAS  Google Scholar 

  12. Ramya K, Sreenivas J, Dhathathreyan KS. Study of a porous membrane humidification method in polymer electrolyte fuel cells. Int J Hydrogen Energy. 2011;36(22):14866–72.

    CAS  Google Scholar 

  13. Wilberforce T, Ijaodola O, Khatib FN, Ogungbemi EO, El Hassan Z, Thompson J, Olabi AG. Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell. Sci Total Environ. 2019;688:1016–35.

    CAS  PubMed  Google Scholar 

  14. Janicka E, Mielniczek M, Gawel L, Darowicki K. Optimization of the relative humidity of reactant gases in hydrogen fuel cells using dynamic impedance measurements. Energies. 2021;14(11):3038.

    CAS  Google Scholar 

  15. Chang Y, Qin Y, Yin Y, Zhang J, Li X. Humidification strategy for polymer electrolyte membrane fuel cells—A review. Appl Energy. 2018;230:643–62.

    CAS  Google Scholar 

  16. Kang S, Min K, Yu S. Two dimensional dynamic modeling of a shell-and-tube water-to-gas membrane humidifier for proton exchange membrane fuel cell. Int J Hydrogen Energy. 2010;35(4):1727–41.

    CAS  Google Scholar 

  17. Yan W-M, Li C-H, Lee C-Y, Rashidi S, Li W-K. Numerical study on heat and mass transfer performance of the planar membrane-based humidifier for PEMFC. Int J Heat Mass Transf. 2020;157: 119918.

    Google Scholar 

  18. Afshari E, Houreh NB. Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system. Energy Convers Manage. 2014;88:612–21.

    Google Scholar 

  19. Jiao K, Li X. Water transport in polymer electrolyte membrane fuel cell. Prog Energy Combust Sci. 2011;37(3):221–91.

    CAS  Google Scholar 

  20. Wang X-D, Yan W-M, Duan Y-Y, Weng F-B, Jung G-B, Lee C-Y. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field. Energy Convers Manage. 2010;51(5):959–68.

    CAS  Google Scholar 

  21. Gurau V, Liu H, Kakaç S. Two-dimensional model for proton exchange membrane fuel cells. Aiche J. 1998;44(11):2410–22.

    CAS  Google Scholar 

  22. Yu S, Im S, Kim S, Hwang J, Lee Y, Kang S, Ahn K. A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization. Int J Heat Mass Transf. 2011;54(7–8):1344–51.

    CAS  Google Scholar 

  23. Chen D, Li W, Peng H. An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control. J Power Sources. 2008;180(1):461–7.

    CAS  Google Scholar 

  24. Houreh NB, Afshari E. Three-dimensional CFD modeling of a planar membrane humidifier for PEM fuel cell systems. Int J Hydrogen Energy. 2014;39(27):14969–79.

    Google Scholar 

  25. Pandey R, Lele A. Modelling of water-to-gas hollow fiber membrane humidifier. Chem Eng Sci. 2018;192:955–71.

    CAS  Google Scholar 

  26. Kidena K, Ohkubo T, Takimoto N, Ohira A. PFG-NMR approach to determining the water transport mechanism in polymer electrolyte membranes conditioned at different temperatures. Eur Polymer J. 2010;46(3):450–5.

    CAS  Google Scholar 

  27. Yan W-M, Chen C-Y, Jhang Y-K, Chang Y-H, Amani P, Amani M. Performance evaluation of a multi-stage plate-type membrane humidifier for proton exchange membrane fuel cell. Energy Convers Manage. 2018;176:123–30.

    Google Scholar 

  28. Lu CH, Li YC, Liu ZE, Zhou H, Zheng H, Chen B. Influence mechanisms of flow channel geometry on water transfer and pressure loss in planar membrane humidifiers for PEM fuel cells. Int J Hydrogen Energy. 2022;47(91):38757–73.

    CAS  Google Scholar 

  29. Li Y, Ma Z, Zheng M, Li D, Lu Z, Xu B. Performance analysis and optimization of a high-temperature PEMFC vehicle based on particle swarm optimization algorithm. Membranes. 2021;11(9):691.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pourkiaei SM, Pourfayaz F, Mehrpooya M, Ahmadi MH. Multi-objective optimization of tubular solid oxide fuel cells fed by natural gas: an energetic and exergetic simultaneous optimization. J Therm Anal Calorim. 2021;145(3):1575–83.

    CAS  Google Scholar 

  31. Ghasabehi M, Shams M, Kanani H. Multi-objective optimization of operating conditions of an enhanced parallel flow field proton exchange membrane fuel cell. Energy Convers Manage. 2021;230: 113798.

    Google Scholar 

  32. Wu J, Liu Q, Fang H. Toward the optimization of operating conditions for hydrogen polymer electrolyte fuel cells. J Power Sources. 2006;156(2):388–99.

    CAS  Google Scholar 

  33. McCarthy E, Flick S, Merida W. Response surface methods for membrane humidifier performance. J Power Sources. 2013;239:399–408.

    CAS  Google Scholar 

  34. Barati S, Khoshandam B, Ghazi MM. An investigation of channel blockage effects on hydrogen mass transfer in a proton exchange membrane fuel cell with various geometries and optimization by response surface methodology. Int J Hydrogen Energy. 2018;43(48):21928–39.

    CAS  Google Scholar 

  35. Leng Y, Yao H, Yang D, Li B, Ming P, Zhang C. The influences of gas diffusion layer material models and parameters on mechanical analysis of proton exchange membrane fuel cell. Fuel Cells. 2021;21(4):373–89.

    CAS  Google Scholar 

  36. Amadane Y, Mounir H. Performance improvement of a PEMFC with dead-end anode by using CFD-Taguchi approach. J Electroanal Chem. 2022;904: 115909.

    CAS  Google Scholar 

  37. Ghasabehi M, Jabbary A, Shams M. Cathode side transport phenomena investigation and multi-objective optimization of a tapered parallel flow field PEMFC. Energy Convers Manage. 2022;265: 115761.

    CAS  Google Scholar 

  38. Yan WM, Lee CY, Li CH, Li WK, Rashidi S. Study on heat and mass transfer of a planar membrane humidifier for PEM fuel cell. Int J Heat Mass Transf. 2020;152: 119538.

    CAS  Google Scholar 

  39. Afshari E, Jazayeri SA. Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance. Energy Convers Manage. 2010;51(4):655–62.

    CAS  Google Scholar 

  40. Meng H, Wang CY. Electron transport in PEFCs. J Electrochem Soc. 2004;151(3):A358-367.

    CAS  Google Scholar 

  41. Wang Y, Wang CY. Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation. J Power Sources. 2005;147(1–2):148–61.

    CAS  Google Scholar 

  42. M.D. Buhmann, Radial basis function approximation on scattered data, in: Radial basis functions: theory and implementations, Cambridge University Press, Cambridge, 2003, pp. 99–136.

  43. Rego J, Martins A, Costa E. Deterministic System Identification Using RBF Networks. Math Probl Eng. 2014;2014(3):1–10.

    Google Scholar 

  44. Bishop CM, Neural networks, in: pattern recognition and machine learning, Springer, 2006, pp. 225–90.

  45. Dickinson EJF, Smith G. Modelling the proton-conductive membrane in practical polymer electrolyte membrane fuel cell (PEMFC) simulation: a review. Membranes. 2020;10(11):310.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Haykin SO, Kernel methods and radial-basis function networks, in: neural networks and learning machines, Prentice Hall, 2008, pp. 230–63.

  47. Hashemi-Valikboni SZ, Ajarostaghi SSM, Delavar MA, Sedighi K. Numerical prediction of humidification process in planar porous membrane humidifier of a PEM fuel cell system to evaluate the effects of operating and geometrical parameters. J Therm Anal Calorim. 2020;141(5):1687–701.

    CAS  Google Scholar 

  48. Chen B, Liu Y, Chen W, Du C, Shen J, Tu Z. Numerical study on purge characteristics and purge strategy for PEMFC hydrogen system based on exhaust hydrogen recirculation. Int J Energy Res. 2022;46(8):11424–42.

    Google Scholar 

  49. Shakouri O, Assad MEH, Açıkkalp E. Thermodynamic analysis and multi-objective optimization performance of solid oxide fuel cell–Ericsson heat engine–reverse osmosis desalination. J Therm Anal Calorim. 2021;145(3):1075–90.

    CAS  Google Scholar 

  50. Yu R, Han H, Yang C, Luo W. Optimal design and decision making of an air cooling channel with hybrid ribs based on RSM and NSGA-II. J Therm Anal Calorim. 2022;147(10):5839–54.

    CAS  Google Scholar 

  51. Goel T, Vaidyanathan R, Haftka RT, Wei S, Queipo NV, Tucker K. Response surface approximation of Pareto optimal front in multi-objective optimization. Comput Methods Appl Mech Eng. 2007;196(4–6):879–93.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Foshan **anhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (Grant No. XHD2020-003) and the National Natural Science Foundation of China (Grant No. 52175111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, H., Lu, C. et al. Multi-objective optimization design of a planar membrane humidifier based on NSGA-II and entropy weight TOPSIS. J Therm Anal Calorim 148, 7147–7161 (2023). https://doi.org/10.1007/s10973-023-12202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12202-4

Keywords

Navigation