Log in

Study on hazard of smoke generated by mining cable fires

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With the advancement of mine intelligence, mining cables find increasingly wider applications in mines. Accordingly, fire accidents caused by them deserve more attention. To accurately grasp the hazard of mining cable fires, this paper studied the pyrolysis characteristics, smoke production law, and smoke toxicity of mining flame-retardant cables by using a thermogravimetry infrared, a CCT-type cone calorimeter, a NBS smoke density test chamber, and a Fourier transform infrared smoke analyzer. The research shows that the pyrolysis processes of the mining cable at different heating rates are similar and experience three stages. During the three stages, the mining cable has activation energies of 22.14 kJ mol−1, 134.11 kJ mol−1, and 65.19 kJ mol−1, respectively, and hence its temperature during pyrolysis mainly ranges from 350 to 470 K. Besides, the primary gas products are CO2, H2O, CH4, HCl, and CO. With the increase of thermal radiation intensity, the mining cable shows a reduction in both the total smoke production and the peak smoke production rate and reaches the peak smoke production rate faster. Moreover, HCl and CO are the major causes of deaths and injuries in cable fires, followed by SO2, HCN, NOx, and CO2. The research results are of guiding significance for personnel evacuation and early monitoring and warning of mining cable fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig.12
Fig.13

Similar content being viewed by others

References

  1. Wang K, Jiang SG, Ma XP, Wu ZY, Shao H, Zhang WQ, Cui CB. Information fusion of plume control and personnel escape during the emergency rescue of external-caused fire in a coal mine. Process Saf Environ. 2016;103:46–59. https://doi.org/10.1016/j.psep.2016.06.026.

    Article  CAS  Google Scholar 

  2. Taylor G, Barrett H, Funk D, Nowlen S. Advances in understanding the phenomena of electrical cable fire-induced hot shorting. Trans Am Nucl Soc. 2011;104:485–6.

    Google Scholar 

  3. Li X, Si GY, Oh J, Corbett P, O’Sullivan T, **ang ZZ, Aziz N, Mirzaghorbanali A. Effect of pretension on the performance of cable bolts and its optimisation in underground coal mines with various geological conditions. Int J Rock Mech Min Sci. 2022;152:105076. https://doi.org/10.1016/j.ijrmms.2022.105076.

    Article  Google Scholar 

  4. Zhu YF, Wang DM, Shao ZL, Xu CH, Zhu XL, Qi XY, Liu FM. A statistical analysis of coalmine fires and explosions in China. Process Saf Environ. 2019;121:357–66. https://doi.org/10.1016/j.psep.2018.11.013.

    Article  CAS  Google Scholar 

  5. Liu ZT, Chu XM, Lin S, Tian JW, Li XL, Gu ZJ. Trends and correlation characteristics of coal mine gas explosion accident factors: a case study. Energy Sour Part A: Recovery Utilization Environ Eff. 2021;2022:1–15. https://doi.org/10.1080/15567036.2022.2040657.

    Article  Google Scholar 

  6. Wang GQ, Shi GQ, Yang YL, Liu S. Experimental study on the exogenous fire evolution and flue gas migration during the fire zone sealing period of the coal mining face. Fuel. 2022;320:123879. https://doi.org/10.1016/j.fuel.2022.123879.

    Article  CAS  Google Scholar 

  7. Kaczorek-Chrobak K, Fangrat J, Papis BK. Calorimetric behaviour of electric cables. Energies. 2021;14(4):1007. https://doi.org/10.3390/en14041007.

    Article  CAS  Google Scholar 

  8. Perka B, Piwowarski K. A method for determining the impact of ambient temperature on an electrical cable during a fire. Energies. 2021;14(21):7260. https://doi.org/10.3390/en14217260.

    Article  Google Scholar 

  9. Li CY, Chen J, Zhang W, Hu LB, Cao JY, Liu JJ, Zhu ZY, Wu SQ. Influence of arc size on the ignition and flame propagation of cable fire. Energies. 2021;14(18):5675. https://doi.org/10.3390/en14185675.

    Article  Google Scholar 

  10. Tripathy DP, Ala CK. Identification of safety hazards in Indian underground coal mines. J Sustain Min. 2018;17(4):175–83. https://doi.org/10.1016/j.jsm.2018.07.005.

    Article  Google Scholar 

  11. Meinier R, Sonnier R, Zavaleta P, Suard S, Ferry L. Fire behavior of halogen-free flame-retardant electrical cables with the cone calorimeter. J Hazard Mater. 2018;342:306–16. https://doi.org/10.1016/j.jhazmat.2017.08.027.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Wei RC, Wang XH, He JJ, Wang J. Pyrolysis and combustion of polyvinyl chloride (PVC) sheath for new and aged cables via thermogravimetric analysis-Fourier transform infrared (TG-FTIR) and calorimeter. Materials. 2018;11(10):1997. https://doi.org/10.3390/ma11101997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen XL, Zhang XY, Zhang XG, Jiao CM. Influence of isopropyl tris (dioctylphosphoryloxy) titanate for flame-retardant TPU based on oyster shell powder. J Therm Anal Calorim. 2020;139(1):197–206. https://doi.org/10.1007/s10973-019-08299-1.

    Article  CAS  Google Scholar 

  14. Ai LH, Yang L, Hu JF, Chen SS. Synergistic flame retardant effect of organic phosphorus–nitrogen and inorganic boron flame retardant on polyethylene. Polym Eng Sci. 2020;60(2):414–22. https://doi.org/10.1002/pen.25296.

    Article  CAS  Google Scholar 

  15. Cogen JM, Chaudhary BI, Ghosh-Dastidar A, Sun Y, Wasserman S. Flame-retardant aspects of XLPE. In: Thomas J, Thomas S, Ahmad Z, editors. Crosslinkable polyethylene. Singapore: Springer; 2021. p. 211–45. https://doi.org/10.1007/978-981-16-0514-7_9.

    Chapter  Google Scholar 

  16. Liu C, Zong RW, Chen HY, Wang JL, Wu CP. Comparative study of toxicity for thermoplastic polyurethane and its flame-retardant composites. J Thermoplast Compos. 2019;32(10):1393–407. https://doi.org/10.1177/0892705718798409.

    Article  CAS  Google Scholar 

  17. Jia PF, Cheng WH, Lu JY, Yin ZT, Xu ZM, Cheng L, Qiu Y, Qian LJ, Hu Y, Hu WZ, Wang BB. Applications of GO/OA-POSS layer-by-layer self-assembly nanocoating on flame retardancy and smoke suppression of flexible polyurethane foam. Polym Advan Technol. 2021;32(11):4516–30. https://doi.org/10.1002/pat.5453.

    Article  CAS  Google Scholar 

  18. Kaczorek-Chrobak K, Fangrat J. Combustible material content vs. Fire properties of electric cables. Energies. 2020;13(23):6172. https://doi.org/10.3390/en13236172.

    Article  CAS  Google Scholar 

  19. Zhou CL, Cao ZQ, Wei G, Wu K. Research on pyrolysis characteristics of pe outer sheath of high-voltage cables based on the principle of oxygen consumption. J Electr Eng Technol. 2023;18(1):679–85. https://doi.org/10.1007/s42835-022-01178-0.

    Article  Google Scholar 

  20. Ren GZ, Huang WH, Jiang WD, Yu B, Lv HK, Zhang XL, Chen B, Liu AW. Spectral analysis of pyrolytic reaction products of typical high voltage cable materials. In: 2022 7th Asia conference on power and electrical engineering (ACPEE). IEEE. 2022; 1652–1658. https://doi.org/10.1109/ACPEE53904.2022.9783801.

  21. Mun SY, Hwang CH. Experimental and numerical studies on major pyrolysis properties of flame retardant pvc cables composed of multiple materials. Materials. 2020;13(7):1712. https://doi.org/10.3390/ma13071712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang YL, Kang N, Lin J, Lu SX, Kim M. On the pyrolysis characteristic parameters of four flame-retardant classes of PVC sheathless cable insulation materials. J Anal Appl Pyrol. 2023;170:105901. https://doi.org/10.1016/j.jaap.2023.105901.

    Article  CAS  Google Scholar 

  23. Zhang JQ, Zhang BS, Fan MH, Wang LF, Guo XJ, Yu DY. Effects of external heat radiation on combustion and toxic gas release of flame retardant cables. Mater Sci Forum. 2017;898:2392–8. https://doi.org/10.4028/www.scientific.net/MSF.898.2392.

    Article  Google Scholar 

  24. Rao BN, Arunjothi R. Assessing smoke and heat release during combustion of electric cables using cone calorimeter. In: Proceedings of the 9th international conference on insulated cables-JICABLE, Versailles, France, 2015; 21–24.

  25. Zhang Z, He YH, Wu Y. Experimental study on smoke characteristics of aviation cable material based on cone calorimeter. In: 2019 9th international conference on fire science and fire protection engineering (ICFSFPE). 2019; 1–7. https://doi.org/10.1109/ICFSFPE48751.2019.9055786.

  26. Li A, Huang BQ, Zhang WL, Ding YM, Zhou R. Experimental study on pyrolysis gas products of chlorinated polyvinyl chloride and its smoke properties during combustion. J Therm Anal Calorim. 2022;147(15):8213–24. https://doi.org/10.1007/s10973-021-11156-9.

    Article  CAS  Google Scholar 

  27. Seo HJ, Kim NK, Lee MC, Lee SK, Moon YS. Investigation into the toxicity of combustion products for CR/EPR cables based on aging period. J Mech Sci Technol. 2020;34(4):1785–94. https://doi.org/10.1007/s12206-020-0340-z.

    Article  Google Scholar 

  28. You JS, Chung YJ. Risk of smoke occurring in the combustion of plastics. Fire Sci Eng. 2019;33(1):69–75. https://doi.org/10.7731/KIFSE.2019.33.1.069.

    Article  Google Scholar 

  29. Mat-Kiah MH, Mustafa BG, Andrews GE, Phylaktou R, Li H. PVC sheathed electrical cable fire smoke toxicity. Saint-Petersburg Polytech Univ Press. 2019;2:1176–86.

    Google Scholar 

  30. Gann RG, Marsh ND. Comparison of smoke component yields between room-scale and bench-scale experiments. Fire Mater. 2021;45(2):225–49. https://doi.org/10.1002/fam.2927.

    Article  CAS  Google Scholar 

  31. Jiang ZH, Liu ZJ, Fei BH, Cai ZY, Yu Y, Liu XE. The pyrolysis characteristics of moso bamboo. J Anal Appl Pyrol. 2012;94:48–52. https://doi.org/10.1016/j.jaap.2011.10.010.

    Article  CAS  Google Scholar 

  32. Farag S, Chaouki J. A modified microwave thermo-gravimetric-analyzer for kinetic purposes. Appl Therm Eng. 2015;75:65–72. https://doi.org/10.1016/j.applthermaleng.2014.09.038.

    Article  CAS  Google Scholar 

  33. Xu L, Li SC, Sun WH, Ma X, Cao SH. Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions. Energy. 2020;203:117831. https://doi.org/10.1016/j.energy.2020.117831.

    Article  CAS  Google Scholar 

  34. Gu XL, Ma X, Li LX, Liu C, Cheng KH, Li ZZ. Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. J Anal Appl Pyrol. 2013;102:16–23. https://doi.org/10.1016/j.jaap.2013.04.009.

    Article  CAS  Google Scholar 

  35. Li LM, Zhang HP, **e QY, Chen L, Xu CM. Experimental study on fire hazard of typical curtain materials in ISO 9705 fire test room. Fire Mater. 2012;36(2):85–96. https://doi.org/10.1002/fam.1089.

    Article  CAS  Google Scholar 

  36. Delichatsios MM, Delichatsios MA. Upward flame spread and critical conditions for PE/PVC cables in a tray configuration. Fire Saf Sci. 2010;4:433–44. https://doi.org/10.3801/IAFSS.FSS.4-433.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key R & D Plan of China (2021YFE0105000), the National Natural Science Foundation of China (52074213), Shaanxi Key R & D Plan Project (2021SF-472 and 2021GY-131), Yulin Science and Technology Plan Project (CXY-2020-036 and CXY-2020-037), Science and Technology Fund for Outstanding Young People of **’an University of Science and Technology (2019YQ2-01), and **’an Science and Technology Plan Project (2020KJRC0068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhang Huo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Huo, Y., Kang, F. et al. Study on hazard of smoke generated by mining cable fires. J Therm Anal Calorim (2023). https://doi.org/10.1007/s10973-023-12136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-023-12136-x

Keywords

Navigation