Log in

Thermal reaction characterization of nano-aluminum powder at different heating rates by synchronous thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article reports an investigation on the thermal reactivity of nano-aluminum powder (NAP) in the air. We performed tests on the metallic powder in synchronous thermal analysis at four heating rates of 5, 10, 15, and 20 °C min−1. Given the polymorphic phase change of aluminum, the oxidation process of NAP was divided into four stages. The results showed a notable effect from the heating rate on the oxidation of NAP. The mass gain decreased at stage II and increased at stage IV as the rate of heating increased. The maximum mass gain rate at 5, 10, 15, and 20 °C min−1 was 2.38, 4.70, 33.79, and 53.38% min−1, respectively, while the thermal release was 35,126, 27,955, 15,608, and 16,336 J g−1, respectively. Furthermore, the average apparent activation energy, preexponential factor, and mechanism function were obtained by the kinetic integral method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Meda L, Marra G, Galfetti L, Severini F, Luca LD. Nano-aluminum as energetic material for rocket propellants. Mater Sci Eng. 2007;27:1393–6.

    Article  CAS  Google Scholar 

  2. Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fathollahi M, Hosseini SG. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel. 2008;87:244–51.

    Article  CAS  Google Scholar 

  3. Marmo L, Piccinini N, Danzi E. Small magnitude explosion of aluminium powder in an abatement plant: a telling case. Process Saf Environ Prot. 2015;98:221–30.

    Article  CAS  Google Scholar 

  4. Li G, Yang HX, Yuan CM, Eckhoff RK. A catastrophic aluminium-alloy dust explosion in china. J Loss Prevent Proc. 2016;39:121–30.

    Article  CAS  Google Scholar 

  5. Deng J, Qu J, Wang QH, Zhai XW, **ao Y, Cheng Y, Shu CM. Minimum ignition temperature of aluminium dust clouds via the Godbert-Greenwald furnace. Process Saf Environ Prot. 2019;129:176–83.

    Article  CAS  Google Scholar 

  6. Li QZ, Lin BQ, Li WX, Zhai C, Zhu CJ. Explosion characteristics of nano-aluminum powder–air mixtures in 20 L spherical vessels. Powder Technol. 2011;212:303–9.

    Article  CAS  Google Scholar 

  7. Bernard S, Gillard P, Frascati F. Ignition and explosibility of aluminium alloys used in additive layer manufacturing. J Loss Prevent Proc. 2017;49:888–95.

    Article  CAS  Google Scholar 

  8. Wu HC, Ou HJ, Peng DJ, Hsiao HC, Gau CY, Shih TS. Dust explosion characteristics of agglomerated 35 nm and 100 nm aluminum particles. Int J Chem Eng. 2010;9:1–6.

    Google Scholar 

  9. Wu HC, Ou HJ, Hsiao HC, Shih TS. Explosion characteristics of aluminum nanopowders. Aerosol Air Qual Res. 2010;10:38–42.

    Article  CAS  Google Scholar 

  10. Denkevits A, Hoess B. Hybrid H2/Al dust explosions in Siwek sphere. J Loss Prevent Proc. 2015;36:509–21.

    Article  CAS  Google Scholar 

  11. Liu XL, Zhang Q. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder–air mixtures. J Hazard Mater. 2015;299:603–17.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Q, Liu LJ, Shen SL. Effect of turbulence on explosion of aluminum dust at various concentrations in air. Powder Technol. 2018;325:467–75.

    Article  CAS  Google Scholar 

  13. Castellanos D, Carreto-Vazquez VH, Mashuga CV, Trottier R, Mejia AF, Mannan MS. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust. Powder Technol. 2014;254:331–7.

    Article  CAS  Google Scholar 

  14. Huang Y, Risha GA, Yang V, Yetter RA. Combustion of bimodal nano/micron-sized aluminum particle dust in air. Proc Combust Inst. 2007;31:2001–9.

    Article  Google Scholar 

  15. Yuasa S, Sogo S, Isoda H. Ignition and combustion of aluminum in carbon dioxide streams. Symp Combust. 1992;24:1817–25.

    Article  Google Scholar 

  16. Bidabadi M, Moallemi N, Shabani A, Abdous MA. Analysis of size distribution and ignition temperature effects on flame speeds in aluminium dust clouds. J Aerosp Eng. 2010;224:113–9.

    Google Scholar 

  17. Zhu Y, Yuasa S. Effects of oxygen concentration on combustion of aluminum in oxygen/nitrogen mixture streams. Combust Flame. 1998;115:327–34.

    Article  CAS  Google Scholar 

  18. Li LB, Chen X, Musa O, Zhou CS, Zhu M. The effect of pressure and oxygen concentration on the ignition and combustion of aluminum–magnesium fuel–rich propellant. Aerosp Sci Technol. 2018;76:394–401.

    Article  Google Scholar 

  19. Gao W, Zhang XY, Zhang DW, Peng QK, Zhang Q, Dobashi R. Flame propagation behaviours in nano-metal dust explosions. Powder Technol. 2017;321:154–62.

    Article  Google Scholar 

  20. Qu J, Deng J, Luo ZM, **ao Y, Shu C-M. Thermal reaction characteristics and microstructure evolution of aluminium nano-powder in various mixtures of oxygen and nitrogen atmosphere. Process Saf Environ Prot. 2023;170:45–53.

    Article  CAS  Google Scholar 

  21. Tseng JM, Huang ST, Duh YS, Hsieh TY, Sun YY, Lin JZ, et al. Thermal analysis and safety information for metal nanopowders by DSC. Thermochim Acta. 2013;566:257–60.

    Article  CAS  Google Scholar 

  22. Zhu BZ, Wang Q, Sun YL, Jia T. Thermal reaction characterization of micron–sized aluminum powders in CO2. Russ J Phys Chem. 2016;10:644–50.

    Article  CAS  Google Scholar 

  23. Johnson CE, Fallis S, Chafin AP, Groshens TJ, Higa KT. Characterization of nanometer- to micron-sized aluminum powders: Size distribution from thermogravimetric analysis. J Propul Power. 2007;23:669–82.

    Article  CAS  Google Scholar 

  24. Vlaskin MS, Shkolnikov EI, Bersh AV. Oxidation kinetics of micron-sized aluminum powder in high–temperature boiling water. Int J Hydrogen Energ. 2011;36:6484–95.

    Article  CAS  Google Scholar 

  25. Feng JQ, Hays DA. Relative importance of electrostatic forces on powder particles. Powder Technol. 2003;135:65–75.

    Article  Google Scholar 

  26. Hu B, Yi Y, Liang C, Yuan ZL, Szczepan R, Yang LJ. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators. Powder Technol. 2018;335:186–94.

    Article  Google Scholar 

  27. Hu RZ, Gao SL, Zhao FQ, et al. Thermal analysis kinetics. 2nd ed. Science Press; 2008.

    Google Scholar 

  28. Rufino B, Coulet MV, Bouchet R, Isnard O, Denoyel R. Structural changes and thermal properties of aluminium micro- and nano-powders. Acta Mater. 2010;58:4224–32.

    Article  CAS  Google Scholar 

  29. Sun J, Simon SL. The melting behavior of aluminum nanoparticles. Thermochim Acta. 2007;463:32–40.

    Article  CAS  Google Scholar 

  30. Schoenitz M, Patel B, Agboh O, Dreizin EL. Oxidation of aluminum powders at high heating rates. Thermochim Acta. 2010;507:115–22.

    Article  Google Scholar 

  31. Jones DEG, Brousseau P, Fouchard RC, Turcotte AM, Kwok QSM. Thermal characterization of passivated nanometer size aluminium powders. J Therm Anal Calorim. 2000;61:805–18.

    Article  CAS  Google Scholar 

  32. Sun YL, Sun R, Zhu BZ, Mao KK, Wu YX. Thermal reaction mechanisms of nano- and micro- scale aluminum powders in carbon dioxide at low heating rate. J Therm Anal Calorim. 2016;124:1727–34.

    Article  CAS  Google Scholar 

  33. Hasani S, Panjepour M, Shamanian M. Non-isothermal kinetic analysis of oxidation of pure aluminium powder particles. Oxid Met. 2013;81:299–313.

    Article  Google Scholar 

  34. Zeng W, Liu JC, Chen XX, Ma HA. A new reduced reaction mechanism of a surrogate fuel for kerosene. Can J Chem Eng. 2013;91:483–9.

    Article  CAS  Google Scholar 

  35. Tognotti L, Malotti A, Petarca L, Zanelli S. Measurement of Ignition Temperature of Coal Particles Using a Thermogravimetric Technique. Combust Sci Tech. 1985;44:15–28.

    Article  CAS  Google Scholar 

  36. Trunov MA, Schoenitz M, Zhu XY, Dreizin EL. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame. 2005;140:310–8.

    Article  CAS  Google Scholar 

  37. Trunov MA, Schoenitz M, Dreizin EL. Effect of polymorphic phase transformations in alumina layer on ignition of aluminum particles. Combust Theor Model. 2006;10:603–24.

    Article  CAS  Google Scholar 

  38. Rai A, Park K, Zhou L, Zachariah MR. Understanding the mechanism of aluminum nanoparticle oxidation. Combust Theor Model. 2006;10:843–59.

    Article  CAS  Google Scholar 

  39. Hasani S, Panjepour M, Shamanian M. The oxidation mechanism of pure aluminium powder particles. Oxid Met. 2012;78:179–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by National Key Research and Development Program of China (No. 2021YFB4000905), National Natural Science Foundation of China (No. 52104214), and the Youth Innovation Team of Shaanxi Universities, China (No. 22JP049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiao Qu or Yang **ao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, J., Deng, J., Luo, ZM. et al. Thermal reaction characterization of nano-aluminum powder at different heating rates by synchronous thermal analysis. J Therm Anal Calorim 148, 4937–4947 (2023). https://doi.org/10.1007/s10973-022-11900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11900-9

Keywords

Navigation