Log in

Advances in heat pipe technologies for different thermal systems applications: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The heat pipes are two-phase flow passive and reliable devices that transfer heat effectively and are vastly utilized in thermal systems. A summary of experimental and numerical studies related to advanced technologies of applications of heat pipes and thermosiphons is offered in this review. This paper focused mainly on the hybrid combinations of heat pipes and phase change materials, heat pipes with nanofluids and heat pipes, and modern electronic devices. Also, the influence of operating variables, such as working fluids, heat inputs, filling ratios, and inclination angles, has been involved. The hybrid systems that combine phase change materials with heat pipes to improve their thermal performance are discussed. Low thermal conductivity of phase change materials and heat pipe overheating has been addressed using these hybrid systems. The impact of nanofluids on the heat pipes’ thermal behaviour is also discussed. Nanofluids enhance the thermal properties of heat pipes by increasing their thermal performance. Heat pipe technology is being used in the thermal management of electronics to enhance their cooling systems. Addressing overheating issues of electronic devices will improve their performance and helps to achieve their robust, small, and flexible design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Shinde TU, Dalvi VH, Mathpati CS, Shenoy N, Panse SV, Joshi. JB. Heat transfer investigation of PCM pipe bank thermal storage for space heating application. Chemical Engineering and Processing - Process Intensification, 2022.

  2. Sukarno R, Putra N, Ibnu Hakim I, Rachman FF, Mahli TMI. Utilizing heat pipe heat exchanger to reduce the energy consumption of airborne infection isolation hospital room HVAC system. J Build Eng. 2021;35:102116.

    Google Scholar 

  3. Ibnu Hakim I, Sukarno R, Putra N. Utilization of U-shaped finned heat pipe heat exchanger in energy-efficient HVAC systems. Therm Sci Eng Prog. 2021;25:100984.

    Google Scholar 

  4. Romano LFR, Ribeiro GB. Optimization of a heat pipe-radiator assembly coupled to a recuperated closed Brayton cycle for compact space power plants. Appl Therm Eng. 2021;196:117355.

    Google Scholar 

  5. Alshukri MJ, Hussein AK, Eidan AA, Alsabery AI. A review on applications and techniques of improving the performance of heat pipe-solar collector systems. Sol Energy. 2022;236:417–33.

    CAS  Google Scholar 

  6. Chilbule PV, Dhole LP. Heat pipe integrated solar thermal systems and applications: a review. Mater Today Proc. 2022;60(3):1491–6.

    Google Scholar 

  7. Mishra RK, Verma K, Mishra V, Chaudhary B. A review on carbon-based phase change materials for thermal energy storage. J Energy Storage. 2022;50:104166.

    Google Scholar 

  8. Shareef AS, Al-Mousawi FN, Sachit HS. Experimental study of a PCM storage system integrated with a thermal solar collector. IOP Conf Ser Mater Sci Eng. 2020;671(1):012018.

    Google Scholar 

  9. Khalifa A, Tan L, Date A, Akbarzadeh A. A numerical and experimental study of solidification around axially finned heat pipes for high temperature latent heat thermal energy storage units. Appl Therm Eng. 2014;70(1):609–19.

    Google Scholar 

  10. Khalifa A, Tan L, Date A, Akbarzadeh A. Performance of suspended finned heat pipes in high-temperature latent heat thermal energy storage. Appl Therm Eng. 2015;81:242–52.

    Google Scholar 

  11. Yogev R, Kribus A. PCM storage system with integrated active heat pipe. Energy Procedia. 2014;49:1061–70.

    Google Scholar 

  12. Tiari S, Qiu S, Mahdavi M. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material. Energy Convers Manage. 2015;89:833–42.

    Google Scholar 

  13. Almsater S, Saman W, Bruno F. Performance enhancement of high temperature latent heat thermal storage systems using heat pipes with and without fins for concentrating solar thermal power plants. Renew Energy. 2016;89:36–50.

    Google Scholar 

  14. Khalifa A, Tan L, Mahony D, Date A, Akbarzadeh A. Numerical analysis of latent heat thermal energy storage using miniature heat pipes: a potential thermal enhancement for CSP plant development. Appl Therm Eng. 2016;108:93–103.

    CAS  Google Scholar 

  15. Motahar S, Khodabandeh R. Experimental study on the melting and solidification of a phase change material enhanced by heat pipe. Int Commun Heat Mass Transfer. 2016;73:1–6.

    Google Scholar 

  16. Lohrasbi S, Miry SZ, Gorji-Bandpy M, Ganji DD. Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O s phase change material. Int J Hydrogen Energy. 2017;42(10):6526–46.

    CAS  Google Scholar 

  17. Tiari S, Mahdavi M, Qiu S. Experimental study of a latent heat thermal energy storage system assisted by a heat pipe network. Energy Convers Manag. 2017;153:362–73.

    CAS  Google Scholar 

  18. Chougulea SS, Nirgude VV, Shewale SP, Pise AT, Sahu SK, Shahd H. Application of paraffin based nanocomposite in heat pipe module for electronic equipment cooling. Mater Today Proc. 2018;5:23333–8.

    Google Scholar 

  19. Heydarian R, Shafii MB, Shirin-Abadi AR, Ghasempour R, Nazari MA. Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe. J Therm Anal Calorim. 2018;137:1603–13.

    Google Scholar 

  20. Ebrahimi A, Hosseini MJ, Ranjbar AA, Rahimi M, Bahrampoury R. Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe. Renew Energy. 2019;138:378–94.

    CAS  Google Scholar 

  21. Jiang ZY, Qu ZG. Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: a comprehensive numerical study. Appl Energy. 2019;242:378–92.

    Google Scholar 

  22. Qu J, Ke Z, Zuo A, Rao Z. Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application. Int J Heat Mass Transf. 2019;129:773–82.

    CAS  Google Scholar 

  23. Ren Q. Enhancement of nanoparticle-phase change material melting performance using a sinusoidal heat pipe. Energy Convers Manage. 2019;180:784–95.

    CAS  Google Scholar 

  24. Zhang C, Yu M, Fan Y, Zhang X, Zhao Y, Qiu L. Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe. Energy. 2020;195:116809.

    Google Scholar 

  25. Abbas S, Ramadan Z, Park CW. Thermal performance analysis of compact-type simulative battery module with paraffin as phase-change material and flat plate heat pipe. Int J Heat Mass Transf. 2021;173:121269.

    CAS  Google Scholar 

  26. Ali HM. Analysis of heat pipe-aided graphene-oxide based nanoparticle-enhanced phase change material heat sink for passive cooling of electronic components. J Therm Anal Calorim. 2021;146:277–86.

    CAS  Google Scholar 

  27. Ali HM. An experimental study for thermal management using hybrid heat sinks based on organic phase change material, copper foam and heat pipe. J Energy Storage. 2022;53:105185.

    Google Scholar 

  28. Peng P, Wang Y, Jiang F. Numerical study of PCM thermal behavior of a novel PCM-heat pipe combined system for Li-ion battery thermal management. Appl Therm Eng. 2022;209:118293.

    CAS  Google Scholar 

  29. Zahmatkesh I, Sheremet M, Yang L, Haris SZ, Sharifpur M, Meyer JP, Ghalambaz M, Wongwises S, **g D, Mahian O. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: a critical review. J Mol Liq. 2021;321:114430.

    CAS  Google Scholar 

  30. Ahmadi MH, Mirlohi A, Nazari MA, Ghasempour R. A review of thermal conductivity of various nanofluids. J Mol Liq. 2018;265:181–8.

    CAS  Google Scholar 

  31. Nazari MA, Ahmadi MH, Sadeghzadeh M, Shafii MB, Goodarzi M. A review on application of nanofluid in various types of heat pipes. J Cent South Univ. 2019;26:1021–41.

    Google Scholar 

  32. Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp Thermal Fluid Sci. 2016;74:265–70.

    CAS  Google Scholar 

  33. Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 2016;301:1218–26.

    CAS  Google Scholar 

  34. Ghorabaee H, Emami MRS, Moosakazemi F, Karimi N, Cheraghian G, Afrand M. The use of nanofluids in thermosyphon heat pipe: a comprehensive review. Powder Technol. 2021;394:250–69.

    CAS  Google Scholar 

  35. Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS. Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Appl Therm Eng. 2015;90:127–35.

    CAS  Google Scholar 

  36. Hassan H, Harmand S. Effect of using nanofluids on the performance of rotating heat pipe. Appl Math Model. 2015;39:4445–62.

    Google Scholar 

  37. Mehrali M, Sadeghinezhad E, Azizian R, Akhiani AR, Latibari ST, Mehrali M, Metselaar HS. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Convers Manage. 2016;118:459–73.

    CAS  Google Scholar 

  38. Aly WIA, Elbalshouny MA, Abd El-Hameed HM, Fatouh M. Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio. Appl Therm Eng. 2017;110:1294–304.

    CAS  Google Scholar 

  39. **ng M, Yu J, Wang R. Performance of a vertical closed pulsating heat pipe with hydroxylated MWNTs nanofluid. Int J Heat Mass Transf. 2017;112:81–8.

    CAS  Google Scholar 

  40. Eidan AA, AlSahlani A, Ahmed AQ, Al-fahham M, Jalil JM. Improving the performance of heat pipe-evacuated tube solar collector experimentally by using Al2O3 and CuO/acetone nanofluids. Sol Energy. 2018;173:780–8.

    CAS  Google Scholar 

  41. Ozsoy A, Corumlu V. Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications. Renew Energy. 2018;122:26–34.

    CAS  Google Scholar 

  42. Ghorabaee H, Emami MRS, Shafahi M. Effect of nanofluid and surfactant on thermosyphon heat pipe performance. Heat Transfer Eng. 2019;41(21):1829–42.

    Google Scholar 

  43. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M. Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew Energy. 2019;136:884–95.

    CAS  Google Scholar 

  44. Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei MR. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM). Physica A. 2019;534:122146.

    Google Scholar 

  45. Zb Li, Sarafraz MM, Mazinani A, Moria H, Tlili I, Alkanhal TA, Goodarzi M, Safaei MR. Operation analysis, response and performance evaluation of a pulsating heat pipe for low temperature heat recovery. Energy Convers Manag. 2020;222:113230.

    Google Scholar 

  46. Sadeghinezhad E, Akhianib AR, Metselaar HSC, Latibari ST, Mehrali M, Mehrali M. Parametric study on the thermal performance enhancement of a thermosyphon heat pipe using covalent functionalized graphene nanofluids. Appl Therm Eng. 2020;175:115385.

    CAS  Google Scholar 

  47. Bin Harun MA, Gunnasegaran PA/L, Sidik NAC, Beriache M, Ghaderian J. Experimental investigation and optimization of loop heat pipe performance with nanofluids. J Therm Anal Calorim. 2021;144:1435–49.

    CAS  Google Scholar 

  48. Reji AK, Kumaresan G, Sarathi A, Arasappa GPS, Kumar RS, Matthew MS. Performance analysis of thermosyphon heat pipe using aluminum oxide nanofluid under various angles of inclination. Mater Today Proc. 2021;45:1211–6.

    CAS  Google Scholar 

  49. Zhang D, He Z, Guan J, Tang S, Shen C. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: an experimental study. Int J Heat Mass Transf. 2022;183:122100.

    CAS  Google Scholar 

  50. De Schampheleire S, De Kerpel K, Deruyter T, De Jaeger P, De Paepe M. Experimental study of small diameter fibres as wick material for capillary-driven heat pipes. Appl Therm Eng. 2015;78:258–67.

    Google Scholar 

  51. De Kerpel K, De Schampheleire S, Steuperaert H, De Jaeger P, De Paepe M. Experimental study of the effect of felt wick porosity on capillary-driven heat pipes. Appl Therm Eng. 2016;96:690–8.

    Google Scholar 

  52. Behi H, Ghanbarpour M, Behi M. Investigation of PCM-assisted heat pipe for electronic cooling. Appl Therm Eng. 2017;127:1132–42.

    Google Scholar 

  53. Kumar KRS, Dinesh R, Roseline AA, Kalaiselvam S. Performance analysis of heat pipe aided NEPCM heat sink for transient electronic cooling. Microelectron Reliab. 2017;73:1–13.

    Google Scholar 

  54. Liu C, Li Q, Fan D. Fabrication and performance evaluation of flexible flat heat pipes for the thermal control of deployable structure. Int J Heat Mass Transf. 2019;144:118661.

    Google Scholar 

  55. Nematollahisarvestani A, Lewis RJ, Lee YC. Design of thermal ground planes for cooling of foldable smartphones. J Electron Packag. 2019. https://doi.org/10.1115/1.4042472.

    Article  Google Scholar 

  56. Zeghari K, Louahlia H, Le Masson S. Experimental investigation of flat porous heat pipe for cooling TV box electronic chips. Appl Therm Eng. 2019;163:114267.

    CAS  Google Scholar 

  57. Brahim T, Jemni A. CFD analysis of hotspots copper metal foam flat heat pipe for electronic cooling applications. Int J Therm Sci. 2021;159:106583.

    CAS  Google Scholar 

  58. Ch Nookaraju B, Rani PK, Kurmara PSV, Sarada SN, Sateesh N, Lakshmi AA, Subbiah R. Experimental and transient thermal analysis of screen mesh wick heat pipe. Mater Today Proc. 2021;46:9920–6.

    CAS  Google Scholar 

  59. Tang H, Weng C, Tang Y, Li H, Xu T, Fu T. Thermal performance enhancement of an ultra-thin flattened heat pipe with multiple wick structure. Appl Therm Eng. 2021;183:116203.

    CAS  Google Scholar 

  60. **ong K, Meng L, Wang S, Zhang LW. Experimental investigation on thermal characteristics of a novel loop heat pipe for cooling high heat flux electronic chips. Int J Heat Mass Transf. 2022;187:22569.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabeel S. Dhaidan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reheem, Z.A., Al-Mousawi, F.N., Dhaidan, N.S. et al. Advances in heat pipe technologies for different thermal systems applications: a review. J Therm Anal Calorim 147, 13011–13026 (2022). https://doi.org/10.1007/s10973-022-11660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11660-6

Keywords

Navigation