Log in

Numerical study on melting and heat transfer characteristics of paraffin wax/ SiC paraffin using enthalpy-porosity model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present numerical study addresses the buoyancy assisted transient two-dimensional early-stage heat transfer and melting process of PCM’s in a square enclosure. Two PCM materials are used namely pure paraffin wax and paraffin with 1 mass % fraction of SiC nano particles. The square enclosure walls are subjected to a constant temperature of 65 °C (Hot wall) and 27 °C (Cold wall) at bottom and top side, respectively, while remaining sides of the enclosure are perfectly insulated. A finite volume (FVM)-based Ansys fluent software along with enthalpy-porosity method is used to capture the phase change process from solid to liquid. The pressure–velocity coupling is performed by coupled scheme, while pressure correction is done by PRESTO method. The transient variation of PCM liquid fraction, temperature, velocity and enthalpy are plotted. The results obtained shows that a notable difference is confined between early melting stages of both paraffin and nano-enhanced paraffin materials. The close observation of velocity vectors clearly shows that the addition of SiC nanoparticles in pure paraffin improves the convective heat transfer rate with time. The addition of SiC nano particles in paraffin reduces the melting time of paraffin but contrary influence the uniformity in temperature distribution and heat transfer characteristics. The presence of SiC nanoparticles increases the liquid fraction and temperature rise by 33% as compared with pure paraffin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

V :

Fluid velocity (m s−1)

K t :

Thermal conductivity (W m−1 °C−1)

C p :

Specific heat at constant pressure (J kg−1 °C−1)

E s :

Specific enthalpy (J kg−1)

E sen :

Sensible enthalpy (J kg−1)

L h :

Latent heat (J kg−1)

S :

Momentum source term

E r :

Reference enthalpy (J kg−1)

T :

Temperature (°C)

T r :

Reference temperature (°C)

T h :

Hot wall temperature (°C)

T c :

Cold wall temperature (°C)

T sd :

Solidus temperature (°C)

T lq :

Liquidus temperature (°C)

T am :

Average melting temperature (°C)

T avg :

Area weighted average temperature (°C)

t :

Time (s)

H :

Height of the enclosure (mm)

Ra :

Rayleigh number

g :

Acceleration due to gravity (m s2)

q wall :

Wall heat flux (W m2)

M Z :

Mushy zone constant

PRESTO :

Pressure staggering option

PCM :

Phase change material

SiC :

Silicon carbide

P 1 :

Paraffin wax

P 2 :

Paraffin with 1% mass fraction of SiC

µ :

Dynamic viscosity (Pa.s)

ρ :

Density (kg m3)

ω :

Constant

γ :

Thermal diffusivity (m2 s1)

α :

Melted liquid fraction

\(\vartheta\) :

Kinematic viscosity (m2 s1)

r:

Reference

h:

Hot

c:

Cold

sd:

Solidus

lq:

Liquidus

am:

Average melting

avg:

Average

s:

Specific

sen:

Sensible

References

  1. Kamkari B, Shokouhmand H. Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. Int J Heat Mass Transf. 2014;78:839–51. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.056.

    Article  Google Scholar 

  2. Archibold AR, Rahman MM, Goswami DY, Stefanakos EK. Analysis of heat transfer and fluid flow during melting inside a spherical container for thermal energy storage. Appl Therm Eng. 2014;64:396–407. https://doi.org/10.1016/j.applthermaleng.2013.12.016.

    Article  Google Scholar 

  3. Tan FL, Hosseinizadeh SF, Khodadadi JM, Fan L. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf. 2009;52:3464–72. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.043.

  4. Seddegh S, Wang X, Henderson AD. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Appl Therm Eng. 2016;93:348–58. https://doi.org/10.1016/j.applthermaleng.2015.09.107.

    Article  Google Scholar 

  5. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13:318–45. https://doi.org/10.1016/j.rser.2007.10.005.

    Article  CAS  Google Scholar 

  6. Himran S, Suwono A, Mansoori GA. Characterization of alkanes and paraffin waxes for application as phase change energy storage medium. Energy Sources. 1994;16:117–28. https://doi.org/10.1080/00908319408909065.

    Article  CAS  Google Scholar 

  7. Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy. 1983;30:313–32. https://doi.org/10.1016/0038-092X(83)90186-X.

    Article  CAS  Google Scholar 

  8. Chaichana MT, Kazem HA. Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle. Sol Energy. 2018;164:370–81.

    Article  Google Scholar 

  9. Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NePCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transfer. 2007;34:534–43.

    Article  CAS  Google Scholar 

  10. Eanest Jebasingh B, Valan Arasu A. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low temperature applications. Energy Storage Mater. 2020;24:52–74. https://doi.org/10.1016/j.ensm.2019.07.031.

  11. Gao JW, Zheng RT, Ohtani H, Zhu DS, Chen G. Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering. Nano Lett. 2009;9:4128–32. https://doi.org/10.1021/nl902358m.

    Article  CAS  PubMed  Google Scholar 

  12. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15. https://doi.org/10.1016/j.molliq.2018.04.144.

    Article  CAS  Google Scholar 

  13. Fan L, Khodadadi JM. An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM). Int J Therm Sci. 2012;62:120–6. https://doi.org/10.1016/j.ijthermalsci.2011.11.005.

    Article  CAS  Google Scholar 

  14. Sarafraz MM, Christo FC. Phase change heat transfer induced by plasmon heat generation in liquid micro-layer inside a micro reactor. J Energy Storage 2021;42:103033.

  15. Shahsavar A, Khanmohammadi S, Karimipour A, Goodaarzi M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity and viscosity: a new approach of GMDH type of neural network. Int J Heat Mass Transf. 2019;131:432–41.

    Article  CAS  Google Scholar 

  16. Sarafraz MM, Safaei MR, Goodarzi M, Yang B, Arjomandi M. Heat Transfer analysis of Ga-In-Sn in a compact heat exchanger equipped with straight micro passages. Int J Heat Mass Transf. 2019;139:675–84.

    Article  CAS  Google Scholar 

  17. Sarafraz MM, Baghi AD, Safaei MR, Leon AS, Ghomaschi R, Goodarzi M, Lin CX. Assesment of Iron oxide (III) therminol-66 nanofluid as a Novel working fluid in a convective radiator heating system for buildings. Energies 2019;12:4327. https://doi.org/10.3390/en12224327.

  18. Iachachene F, Haddad Z, Oztop HF, Abu-Nada E. Melting of phase change materials in a trapezoidal cavity: orientation and nanoparticles effects. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.03.051.

    Article  Google Scholar 

  19. Fadl M, Eames PC. Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems. Appl Therm Eng. 2019;151:90–9.

    Article  CAS  Google Scholar 

  20. Ebrahimi A, Dadvand A. Simulation of melting of a nano-enhanced phase change material (NePCM) in a square cavity with two heat source–sink pairs. Alex Eng J. 2015;54:1003–17.

    Article  Google Scholar 

  21. Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 2007;50:1790–804.

    Article  Google Scholar 

  22. Regin AF, Solanki SC, Saini JS. Latent heat thermal energy storage using cylindrical capsule: numerical and experimental investigations. Renew Energy. 2006;31:2025–41.

    Article  Google Scholar 

  23. Shokouhmand H, Kamkari B. Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp Ther Fluid Sci. 2013;50:201–12.

    Article  CAS  Google Scholar 

  24. Brent AD, Voller VR, Reid KJ. Enthalpy-Porosity Technique for modeling convection-diffusion phase change: application to melting of a pure metal. Numer Heat Transf. 1988;13:297–318.

    Article  Google Scholar 

  25. Vogel J, Felbinger J, Jhonson M. Natural Convection in High Temperature Flat Plate latent heat thermal energy storage system. Appl Energy. 2016;184:184–96.

    Article  CAS  Google Scholar 

  26. Maher H, Rocky KA, Bassiouny R, Saha BB. Synthesis and thermal characterization of paraffin-based nanocomposites for thermal energy storage applications. Ther Sci Eng Prog. 2020. https://doi.org/10.1016/j.tsep.2020.100797.

    Article  Google Scholar 

  27. Jilte R, Afzal A, Panchal S. A novel battery thermal management system using nano-enhanced phase change materials. Energy. 2021;219: 119564. https://doi.org/10.1016/j.energy.2020.119564.

    Article  CAS  Google Scholar 

  28. Jilte R, Afzal A, Islam MT, Manokar AM. Hybrid cooling of cylindrical battery with liquid channels in phase change material. Int J Energy Res. 2021. https://doi.org/10.1002/er.6590.

    Article  Google Scholar 

  29. Afzal A, Mokashi I, Khan SA, NAA, Muhammad Azami Bin H. Optimization and analysis of maximum temperature in a battery pack affected by low to high Prandtl number coolants using response surface methodology and particle swarm optimization algorithm. Numer Heat Transf Part A Appl. 2020;0:1–30. https://doi.org/10.1080/10407782.2020.1845560.

  30. Mokashi I, Afghan S, Nur, Abdullah A, Hanafi, Muhammad Azami B, Afzal A. Maximum temperature analysis in a Li‑ion battery pack cooled by different fluids. J Therm Anal Calorim. 2020;1–17. https://doi.org/10.1007/s10973-020-10063-9.

  31. Upender H, Kishore KA, Afzal A, Islam MT, Ibrahim M. Mean residence time and mass fraction of tracer in a liquid-solid tapered inverse fluidized bed: numerical modelling with experimental validation. J Taiwan Inst Chem Eng. 2021;000:1–11. https://doi.org/10.1016/j.jtice.2021.09.004.

    Article  CAS  Google Scholar 

  32. Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27:1271–7. https://doi.org/10.1016/j.applthermaleng.2006.11.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author extends his appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through the Research Group Program under Grant No: RGP 2/26/43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ahamed Saleel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleel, C.A. Numerical study on melting and heat transfer characteristics of paraffin wax/ SiC paraffin using enthalpy-porosity model. J Therm Anal Calorim 147, 10497–10508 (2022). https://doi.org/10.1007/s10973-022-11265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11265-z

Keywords

Navigation