Log in

Thermal performance of a radial heat sink with longitudinal wavy fins for electronic cooling applications under natural convection

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat dissipation by natural convection from heat generating electronic devices is a ubiquitous phenomenon in engineering and research to improve the thermal efficiency of the devices and upsurge their lifespan. In this context, this paper outlines a numerical study on the thermal performance of a radial heat sink with longitudinal wavy fins under the influence of pure natural convection. Three-dimensional numerical computations have been performed to elucidate the heat dissipation characteristics from a horizontally oriented radial heat sink with considering the following pertinent parameters: Rayleigh number (Ra), number of fins (Nfin), fin height (H/d), pitch-to-amplitude ratio (P/A) of the wavy fin, and number of cycles (n) in a wavy fin. A limiting case of straight longitudinal fins is also simulated to compare and justify the use of wavy fins over straight fins. At certain ranges of the pertinent parameters, wavy fins intensify the thermo-buoyant flow and augment the heat dissipation from the fin surface. The results reveal that wavy fins are superior to straight fins at higher Ra and below a critical Nfin, whereas straight fins are still superior at low Ra and higher values of Nfin. At higher Ra, the average Nusselt number (Nu) and fin effectiveness are higher for wavy fins of three cycles, followed by two and one cycles for Nfin below 24. Furthermore, the optimum Nfin for maximum fin effectiveness gradually increases with rise in Ra. The present study on longitudinal wavy fins affirms to be the very first research work in the field of radial heat sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A :

Amplitude (m)

A T :

Total surface area (m2)

A fin :

Fin surface area (m2)

A b :

Bare tube surface area (m2)

c p :

Specific heat at constant pressure (J kg1 K1)

c :

Correlation constants

d :

Tube diameter (m)

g :

Acceleration due to gravity (m s2)

Gr r :

Grashof number based on tube radius

h :

Heat transfer coefficient (W m2 K1)

H :

Fin height (m)

k :

Thermal conductivity (W m1 K1)

L :

Cylinder length (m)

n :

Number of cycles

\(\hat n\) :

Normal unit vector

N fin :

Number of fins

Nu :

Average Nusselt number

Nu d :

Nusselt number based on tube diameter

Nu r :

Nusselt number based on tube radius

p :

Pressure (N m2)

P :

Pitch (m)

q :

Heat flux (W m2)

Q :

Heat transfer rate (W)

r :

Tube radius (m)

R 2 :

Coefficient of correlation

Ra :

Rayleigh number

t :

Fin thickness (m)

T :

Temperature (K)

u :

Velocity vector (m s1)

x :

Cartesian coordinate vector (m)

X :

Dimension of the domain in x-direction (m)

Y 1 ,Y 2 :

Dimensions of the domain in y-direction (m)

Z :

Dimension of the domain in z-direction (m

ρ :

Density (kg m3)

β :

Thermal expansion coefficient (K1)

µ :

Dynamic viscosity (kg m1 s1)

ε :

Fin effectiveness

c:

Computed

eff:

Effective

f:

Fluid

fin:

Fin

i,j:

Index notations

m:

Mean

p:

Predicted

s:

Solid

w:

Wall

x,y,z:

Cartesian directions

∞:

Ambient

ζ:

Average

References

  1. Incropera FP. Convection heat transfer in electronic equipment cooling. J Heat Transf. 1988;110:1097–112.

    Article  Google Scholar 

  2. Ibrahim M, Berrouk AS, Algehyne EA, Saeed T, Chu YM. Energetic and exergetic analysis of a new circular micro-heat sink containing nanofluid: applicable for cooling electronic equipment. J Therm Anal Calorim. 2021;145:1547–57.

    Article  CAS  Google Scholar 

  3. Lee JB, Kim HJ, Kim DK. Thermal optimization of horizontal tubes with tilted rectangular fins under free convection for the cooling of electronic devices. Appl Sci. 2017;7:352.

    Article  Google Scholar 

  4. Yu C, Wu S, Huang Y, Yao F, Liu X. Charging performance optimization of a latent heat storage unit with fractal tree-like fins. J Energy Storage. 2020;30:101498.

    Article  Google Scholar 

  5. Karlapalem V, Rath S, Dash SK. Orientation effects on laminar natural convection heat transfer from branching-fins. Int J Therm Sci. 2019;142:89–105.

    Article  Google Scholar 

  6. Turkyilmazoglu M. Thermal management of parabolic pin fin subjected to a uniform oncoming airflow: optimum fin dimensions. J Therm Anal Calorim. 2021;143:3731–9.

    Article  CAS  Google Scholar 

  7. Khan ZH, Khan WA, Hamid M. Non-newtonian fluid flow around a Y-shaped fin embedded in a square cavity. J Therm Anal Calorim. 2021;143:573–85.

    Article  CAS  Google Scholar 

  8. Liu X, Huang Y, Zhang X, Zhang C, Zhou B. Investigation on charging enhancement of a latent thermal energy storage device with uneven tree-like fins. Appl Therm Eng. 2020;179:115749.

    Article  Google Scholar 

  9. Park SJ, Lee KS. Orientation effect of a radial heat sink with a chimney for LED downlights. Int J Heat Mass Transf. 2017;110:416–21.

    Article  Google Scholar 

  10. Zhao W, Chen X, Wang W, Zhang Y, Su W, Li B. Numerical study on thermal performances of bare, circular and rectangular finned pipes for road heating. J Therm Anal Calorim. 2020;140:1147–57.

    Article  CAS  Google Scholar 

  11. Shadlaghani A, Farzaneh M, Shahabadi M, Tavakoli MR, Safaei MR, Mazinani I. Numerical investigation of serrated fins on natural convection from concentric and eccentric annuli with different cross sections. J Therm Anal Calorim. 2019;135:1429–42.

    Article  CAS  Google Scholar 

  12. Tsubouchi T, Masuda H. Natural convection heat transfer from horizontal cylinder with circular fins. Int Heat Transf Conf. 2019;4:1–11.

    Google Scholar 

  13. Yazicioǧlu B, Yüncü H. Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer. Heat Mass Transf. 2007;44:11–21.

    Article  Google Scholar 

  14. Kim HJ, An H, Park J, Kim D-K. Experimental study on natural convection heat transfer from horizontal cylinders with longitudinal plate fins. J Mech Sci Technol. 2013;27:593–9.

    Article  Google Scholar 

  15. Yu SH, Lee KS, Yook SJ. Natural convection around a radial heat sink. Int J Heat Mass Transf. 2010;53:2935–8.

    Article  Google Scholar 

  16. Li B, Byon C. Orientation effects on thermal performance of radial heat sinks with a concentric ring subject to natural convection. Int J Heat Mass Transf. 2015;90:102–8.

    Article  Google Scholar 

  17. Kwon H, Joo Y, Kim SJ. Analytic approach to thermal optimization of horizontally oriented radial plate-fin heat sinks in natural convection. Energy Convers Manag. 2018;156:555–67.

    Article  Google Scholar 

  18. Costa VAF, Lopes AMG. Improved radial heat sink for led lamp cooling. Appl Therm Eng. 2014;70:131–8.

    Article  Google Scholar 

  19. Shen Q, Sun D, Xu Y, ** T, Zhao X, Zhang N, et al. Natural convection heat transfer along vertical cylinder heat sinks with longitudinal fins. Int J Therm Sci. 2016;100:457–64.

    Article  Google Scholar 

  20. Konar D, Sultan MA, Roy S. Numerical analysis of 2-D laminar natural convection heat transfer from solid horizontal cylinders with longitudinal fins. Int J Therm Sci. 2020;154:106391.

    Article  Google Scholar 

  21. Acharya S, Dash SK. Natural convection heat transfer from a horizontal hollow cylinder with internal longitudinal fins. Int J Therm Sci. 2018;134:40–53.

    Article  Google Scholar 

  22. Acharya S, Dash SK. Natural convection heat transfer from a hollow horizontal cylinder with external longitudinal fins: a numerical approach. Numer Heat Transf A Appl. 2018;74:1405–23.

    Article  CAS  Google Scholar 

  23. Siddhartha S, Rath S, Dash SK. Thermal performance of a wavy annular finned horizontal cylinder in natural convection for electronic cooling application. Int Commun Heat Mass Transf. 2021;128:105623.

    Article  Google Scholar 

  24. Altun AH, Ziylan O. Experimental investigation of the effects of horizontally oriented vertical sinusoidal wavy fins on heat transfer performance in case of natural convection. Int J Heat Mass Transf. 2019;139:425–31.

    Article  Google Scholar 

  25. Nilpueng K, Ahn HS, Jerng DW, Wongwises S. Heat transfer and flow characteristics of sinusoidal wavy plate fin heat sink with and without crosscut flow control. Int J Heat Mass Transf. 2019;137:565–72.

    Article  Google Scholar 

  26. Khaled ARA. Thermal performance of six different types of wavy-fins. Int J Numer Methods Heat Fluid Flow. 2015;25:892–911.

    Article  Google Scholar 

  27. Copiello D, Fabbri G. Multi-objective genetic optimization of the heat transfer from longitudinal wavy fins. Int J Heat Mass Transf. 2009;52:1167–76.

    Article  CAS  Google Scholar 

  28. Jha VK, Bhaumik SK. Enhanced heat dissipation in helically finned heat sink through swirl effects in free convection. Int J Heat Mass Transf. 2019;138:889–902.

    Article  Google Scholar 

  29. Rath S, Dash SK. Natural convection in power-law fluids from a pair of two attached horizontal cylinders. Heat Transf Eng. 2021;42:627–53.

    Article  CAS  Google Scholar 

  30. Rath S, Dash SK. Effect of horizontal spacing on natural convection to power-law fluids from two horizontally aligned cylinders. Heat Transf Eng. 2021;42:854–74.

    Article  CAS  Google Scholar 

  31. Biradar BA, Rath S, Dash SK. Orientation effects on conjugate natural convection heat transfer from an LED bulb: a numerical study. Int J Therm Sci. 2021;159:106640.

    Article  Google Scholar 

  32. Mulamootil JK, Rath S, Dash SK. Relative importance of temperature-dependent properties in non-Newtonian natural convection around curved surfaces. Int Commun Heat Mass Transf. 2021;124:105263.

    Article  Google Scholar 

  33. ANSYS Inc. ANSYS fluent release 15.0 user manual. Canonsburg, PA (2013)

  34. Rath S, Dash SK. Numerical investigation of natural convection heat transfer from a stack of horizontal cylinders. J Heat Transf Trans ASME. 2019;141:012501.

    Article  Google Scholar 

  35. Rath S, Dash SK. Laminar and turbulent natural convection from a stack of thin hollow horizontal cylinders: a numerical study. Numer Heat Transf A Appl. 2019;75:753–75.

    Article  Google Scholar 

  36. Rath S, Dash SK. Effect of horizontal spacing and tilt angle on thermo-buoyant natural convection from two horizontally aligned square cylinders. Int J Therm Sci. 2019;146:106113.

    Article  Google Scholar 

  37. Garnayak S, Rath S. Numerical computation on natural convection heat transfer from an isothermal sphere with semi-circular ribs. J Heat Transf Trans ASME. 2021;143:092601.

    Article  CAS  Google Scholar 

  38. Rath S, Dash SK. Numerical study of laminar and turbulent natural convection from a stack of solid horizontal cylinders. Int J Therm Sci. 2020;148:106147.

    Article  Google Scholar 

  39. Haldar SC. Laminar free convection around a horizontal cylinder with external longitudinal fins. Heat Transf Eng. 2004;25:45–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Indian Institute of Technology Kharagpur, India, for providing computer and software facilities in the Computational Fluid Dynamics (CFD) laboratory at the Department of Mechanical Engineering. One of the authors (Siddharth) would also like to acknowledge the Ministry of Human Resource Development (MHRD), Govt. of India, for supporting with regular doctoral assistantship through IIT Kharagpur.

Author information

Authors and Affiliations

Authors

Contributions

Subhasisa Rath contributed to conceptualization, methodology, visualization, writing—original draft, writing—review and editing, and supervision. Siddharth contributed to simulation, data curation, validation, and visualization. Sukanta Kumar Dash contributed to writing—review and editing and supervision.

Corresponding author

Correspondence to Subhasisa Rath.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest in this article.

Data availability

All data and material associated with this article are provided within the text.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Effect of wavy fin geometry on flow fields (velocity vectors)

Appendix A: Effect of wavy fin geometry on flow fields (velocity vectors)

See Fig. 18.

Fig. 18
figure 18

Velocity vectors around the longitudinal straight and wavy (P/A = 35 and n = 1) finned tube on the flow field at Ra = 107 and H/d = 1; a straight fins of Nfin = 20, b wavy fins of Nfin = 20, c straight fins of Nfin = 8, d wavy fins of Nfin = 8, e magnified view of straight fins of Nfin = 8, and f magnified view of wavy fins of Nfin = 8 (umax indicates the magnitude of maximum velocity in the flow field)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, S., Siddhartha & Dash, S.K. Thermal performance of a radial heat sink with longitudinal wavy fins for electronic cooling applications under natural convection. J Therm Anal Calorim 147, 9119–9137 (2022). https://doi.org/10.1007/s10973-021-11162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11162-x

Keywords

Navigation