Log in

Thermophysical and rheological properties of hybrid nanofluids: a review on recent studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hybrid nanofluids are gaining popularity due to better thermophysical properties than mono nanofluids. They also benefit from the fact that their properties can be changed by changing the type and mixture ratio of nanoparticles. The properties of mono nanofluids can be changed appreciably by varying several parameters such as nanoparticles concentration, nanoparticles diameter, nanoparticles shape, temperature, pH, surfactant, and ultrasonication time. In case of hybrid nanofluids, however, besides these parameters, nanoparticles mixture ratio and even relative diameter also affect the thermophysical and rheological properties. Recently, a good number of studies have been conducted on thermophysical and rheological properties of hybrid nanofluids. However, majority of these studies have focused on thermal conductivity, followed by viscosity and specific heat capacity. The aim of this review paper is to provide a detailed review on recently conducted studies on the thermophysical and rheological properties of hybrid nanofluids. Also, special emphasis has been placed to review the effect of nanoparticles mixture ratio on the aforementioned properties. Besides experimental determination, researchers have also relied on computational methods for modeling these properties. Therefore, several recently developed soft computing models (such as artificial neural networks, adaptive neuro-fuzzy inference system) and empirical correlations are also presented in this review paper. Lastly, in light of studies reviewed, recommendations for future work are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

c :

Speed of light in a vacuum inertial

h:

Plank constant

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME (FED). 1995;231:99–105.

    CAS  Google Scholar 

  2. Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev. 2017;76:1134–52.

    CAS  Google Scholar 

  3. Shahrul IM, Mahbubul IM, Khaleduzzaman SS, Saidur R, Sabri MFM. A comparative review on the specific heat of nanofluids for energy perspective. Renew Sustain Energy Rev. 2014;38:88–98.

    CAS  Google Scholar 

  4. Bakthavatchalam B, Habib K, Saidur R, Saha BB, Irshad K. Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: a review on current and future perspective. J Mol Liq. 2020;305.

    CAS  Google Scholar 

  5. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO-TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35.

    CAS  Google Scholar 

  6. Qaeys IA, Yahya SM, Asjad M, Khan ZA. Multi-performance optimization of nanofluid cooled hybrid photovoltaic thermal system using fuzzy integrated methodology. J Clean Prod. 2020;256.

    Google Scholar 

  7. **an HW, Sidik NAC, Najafi G. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2019;135:981–1008.

    CAS  Google Scholar 

  8. Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: a critical review. Energy Conv Manag. 2018;172:438–56.

    CAS  Google Scholar 

  9. Alawi OA, Sidik NAC, Beriache M. Applications of nanorefrigerant and nanolubricants in refrigeration, air-conditioning and heat pump systems: a review. Int Commun Heat Mass Transf. 2015;68:91–7.

    CAS  Google Scholar 

  10. Goel N, Taylor RA, Otanicar T. A review of nanofluid-based direct absorption solar collectors: design considerations and experiments with hybrid PV/thermal and direct steam generation collectors. Renew Energy. 2020;145:903–13.

    CAS  Google Scholar 

  11. Mukherjee S, Mishra PC, Chaudhuri P. Stability of heat transfer nanofluids: a review. Chem Bio Eng. 2018;5(5):312–33.

    CAS  Google Scholar 

  12. Afzal A, Nawfal I, Mahbubul IM, Kumbar SS. An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim. 2019;135:393–418.

    CAS  Google Scholar 

  13. Wang J, Li G, Li T, Zeng M, Sundén B. Effect of various surfactants on stability and thermophysical properties of nanofluids. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09381-9.

  14. Sajid MU, Ali M. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    CAS  Google Scholar 

  15. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf. 2016;52:2293–301.

    CAS  Google Scholar 

  16. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermo Acta. 2015;617:102–10.

    CAS  Google Scholar 

  17. Madhesh D, Parameshwaran R, Kalaiselvam S. Experimental investigation on convective heat transfer and rheological characteristics of Cu-TiO2 hybrid nanofluids. Exp Therm Fluid Sci. 2014;52:104–15.

    CAS  Google Scholar 

  18. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    CAS  Google Scholar 

  19. Wei B, Zou C, Yuan X, Li X. Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications. Int J Heat Mass Transf. 2017;107:281–7.

    CAS  Google Scholar 

  20. Li CC, Hau NY, Wang Y, Soh AK, Feng SP. Temperature-dependent effect of percolation and Brownian motion on the thermal conductivity of TiO2-ethanol nanofluids. Phys Chem Chem Phys. 2016;18:15363–8.

    CAS  PubMed  Google Scholar 

  21. Hussein AM. Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger. Exp Therm Fluid Sci. 2017;88:37–45.

    CAS  Google Scholar 

  22. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86.

    CAS  Google Scholar 

  23. Parsian A, Akbari M. New experimental correlation for the thermal conductivity of ethylene glycol containing Al2O3-Cu hybrid nanoparticles. J Therm Anal Calorim. 2018;131:1605–13.

    CAS  Google Scholar 

  24. Nabil MF, Azmi WH, Hamid KA, Mamat R, Hagos FY. An experimental study on the thermal conductivity and dynamic viscosity of TiO2–SiO2 nanofluids in water: Ethylene glycol mixture. Int Commun Heat Mass Transf. 2017;86:181–9.

    CAS  Google Scholar 

  25. Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO-Ag (50–50%)/water hybrid nanofluid: An experimental study. Powder Technol. 2018;323:367–73.

    CAS  Google Scholar 

  26. Tahat MS, Benim AC. Experimental Analysis on Thermophysical Properties of Al2O3/CuO Hybrid Nano Fluid with its Effects on Flat Plate Solar Collector. Defect Diffusion Forum. 2017;374:148–56.

    Google Scholar 

  27. Akilu S, Baheta AT, Sharma KV. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. J Mol Liq. 2017;246:396–405.

    CAS  Google Scholar 

  28. Sundar LS, Singh MK, Sousa ACM. Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: An experimental study. Int J Heat Mass Transf. 2018;117:223–34.

    CAS  Google Scholar 

  29. Aberoumand S, Jafarimoghaddam A. Tungsten (III) oxide (WO3)-Silver/transformer oil hybrid nanofluid: preparation, stability, thermal conductivity and dielectric strength. Alexandria Eng J. 2018;57:169–74.

    Google Scholar 

  30. Esfe MH, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2018;131:1437–47.

    Google Scholar 

  31. Esfe MH, Behbahani PM, Arani AAA, Sarlak MR. Thermal conductivity enhancement of SiO2-MWCNT (85:15%)-EG hybrid nanofluids. J Therm Anal Calorim. 2017;128:249–58.

    Google Scholar 

  32. Esfe MH, Rejvani M, Karimpour A, Arani AAA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT-Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128:1359–71.

    CAS  Google Scholar 

  33. Esfe MH, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl Therm Eng. 2017;125:673–85.

    Google Scholar 

  34. Esfe MH, Arani AAA, Firouzi M. Empirical study and model development of thermal conductivity improvement and assessment of cost and sensitivity of EG-water based SWCNT-ZnO (30%:70%) hybrid nanofluid. J Mol Liq. 2017;244:252–61.

    Google Scholar 

  35. Esfe MH, Rostamian SH, Alirezaie A. An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management. Appl Therm Eng. 2017;111:1202–10.

    Google Scholar 

  36. Esfe MH, Esfande S, Rostamian SH. Experimental evaluation, new correlation proposing and ANN modeling of thermal conductivity of ZnO-DWCNT/EG hybrid nanofluid for internal combustion engines applications. Appl Therm Eng. 2018;133:452–63.

    CAS  Google Scholar 

  37. Esfe MH, Arani AAA, Badi RS, Rejvani M. ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT-SiO2 /EG hybrid nanofluid for higher heat transfer. J Therm Anal Calorim. 2018;131:2381–93.

    Google Scholar 

  38. Rostamian SH, Biglari M, Saedodin S, Esfe MH. An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J Mol Liq. 2017;231:364–9.

    CAS  Google Scholar 

  39. Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: Develo** a new correlation. Powder Technol. 2018;338:806–18.

    CAS  Google Scholar 

  40. Said Z, Abdelkareem MA, Rezk H, Nassef AM, Atwany HZ. Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach. Powder Technol. 2020;364:795–809.

    CAS  Google Scholar 

  41. Ghaffarkhah A, Afrand M, Talebkeikhah M, Sehat AA, Moraveji MK, Talebkeikhah F, Arjmand M. On evaluation of thermophysical properties of transformer oil- based nanofluids: a comprehensive modeling and experimental study. J Mol Liq. 2020;300.

    CAS  Google Scholar 

  42. **an HW, Sidik NAC, Saidur R. Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int Commun Heat Mass Transf. 2020;110.

    CAS  Google Scholar 

  43. Fattahi M, Khakrah H, Jamalabadi MYA, Bagheri N, Ross D. Cooling of an electronic package using lattice Boltzmann/finite volume method with experimental rheological/thermal analysis of hybrid nanofluid properties. J Mol Liq. 2020;299.

    CAS  Google Scholar 

  44. Taherialekouhi R, Rasouli S, Khosravi A. An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid. Int J Heat Mass Transf. 2019;145.

    CAS  Google Scholar 

  45. Moghadam IP, Afrand M, Hamad SM, Barzinjy AA, Talebizadehsardari P. Curve-fitting on experimental data for predicting the thermal-conductivity of a new generated hybrid nanofluid of graphene oxide-titanium oxide/water. Physica A. 2019;548.

    Google Scholar 

  46. Aparna Z, Michael M, Pabi SK, Ghosh S. Thermal conductivity of aqueous Al2O3/Ag hybrid nanofluid at different temperatures and volume concentrations: an experimental investigation and development of new correlation function. Powder Technol. 2019;343:714–22.

    CAS  Google Scholar 

  47. Esfe MH, Esfandeh S, Amiri MK, Afrand M. A novel applicable experimental study on the thermal behavior of SWCNTs(60%)-MgO(40%)/EG hybrid nanofluid by focusing on the thermal conductivity. Powder Technol. 2019;342:998–1007.

    CAS  Google Scholar 

  48. Moradi A, Zareh M, Afrand M, Khayat M. Effects of temperature and volume concentration on thermal conductivity of TiO2-MWCNTs (70–30)/EG-water hybrid nano-fluid. Powder Technol. 2020;362:578–85.

    CAS  Google Scholar 

  49. Moldoveanu GM, Huminic G, Minea AA, Huminic A. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int J Heat Mass Transf. 2018;127:450–7.

    CAS  Google Scholar 

  50. Kakavandi A, Akbari M. Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. Int J Heat Mass Transf. 2018;124:742–51.

    CAS  Google Scholar 

  51. Trinh PV, Anh NN, Hong NT, Hong PN, Minh PN, Thang BH. Experimental study on the thermal conductivity of ethylene glycol-based nanofluid containing Gr-CNT hybrid material. J Mol Liq. 2018;269:344–53.

    Google Scholar 

  52. Naddaf A, Heris SZ. Experimental study on thermal conductivity and electrical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes. Int Commun Heat Mass Transf. 2018;95:116–22.

    CAS  Google Scholar 

  53. Asadi M, Asadi A, Aberoumand S. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pum** power of an oil-based nanofluid as a coolant fluid. Int J Refrig. 2018;89:83–92.

    CAS  Google Scholar 

  54. Bagheri H, Nadooshan AA. The effects of hybrid nano-powder of zinc oxide and multi walled carbon nanotubes on the thermal conductivity of an antifreeze. Phys A. 2018;103:361–6.

    CAS  Google Scholar 

  55. Akilu S, Baheta AT, Said MAM, Minea AA, Sharma KV. Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Solar Energy Mat Solar Cells. 2018;179:118–28.

    CAS  Google Scholar 

  56. Pourrajab R, Noghrehabadi A, Hajidavalloo E, Behbahani M. Investigation of thermal conductivity of a new hybrid nanofluids based on mesoporous silica modified with copper nanoparticles: Synthesis, characterization and experimental study. J Mol Liq. 2020;300:112337.

    CAS  Google Scholar 

  57. Pourrajab R, Noghrehabadi A, Behbahani M, Hajidavalloo E. An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: experimental study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09300-y.

    Article  Google Scholar 

  58. Zadkhast M, Toghraie D, Karimipour A. Develo** a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129:859–67.

    CAS  Google Scholar 

  59. Rubasingh BJ, Selvakumar P, Raja RSS. Predicting thermal conductivity behaviour of ZnO, TiO2 and ball milled TiO2/ZnO based nanofluids with ethylene glycol as base fluid. Mat Res Exp. 2019;6:095702.

    CAS  Google Scholar 

  60. Arani AAA, Pourmoghadam F. Experimental investigation of thermal conductivity behavior of MWCNTS-Al2O3/ethylene glycol hybrid Nanofluid: providing new thermal conductivity correlation. Heat Mass Transf. 2019;55:2329–39.

    CAS  Google Scholar 

  61. Esfe MH, Amiri MK, Alirezaie A. Thermal conductivity of a hybrid nanofluid. J Therm Anal Calorim. 2018;134:1113–22.

    Google Scholar 

  62. Gangadevi R, Vinayagam BK. Experimental determination of thermal conductivity and viscosity of different nanofluids and its effect on a hybrid solar collector. J Therm Anal Calorim. 2019;136:199–209.

    CAS  Google Scholar 

  63. Ahmed W, Kazi SN, Chowdhury ZZ, Johan MR. One-pot sonochemical synthesis route for the synthesis of ZnO@TiO2/DW hybrid/composite nanofluid for enhancement of heat transfer in a square heat exchanger. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09362-y.

    Article  Google Scholar 

  64. Hashemzadeh S, Hormozi F. An experimental study on hydraulic and thermal performances of hybrid nanofluids in mini-channel. J Therm Anal Calorim. 2020;140:891–903.

    CAS  Google Scholar 

  65. Barewar SD, Tawri S, Chougule SS. Experimental investigation of thermal conductivity and its ANN modeling for glycol-based Ag/ZnO hybrid nanofluids with low concentration. J Therm Anal Calorim. 2020;139:1779–90.

    CAS  Google Scholar 

  66. Barewar SD, Chougule SS, Jadhav J, Biswas S. Synthesis and thermo-physical properties of water-based novel Ag/ZnO hybrid nanofluids. J Therm Anal Calorim. 2018;134:1493–504.

    CAS  Google Scholar 

  67. Okonkwo EC, Wole-Osho I, Kavaz D, Abid M. Comparison of experimental and theoretical methods of obtaining the thermal properties of alumina/iron mono and hybrid nanofluids. J Mol Liq. 2019;292:11377.

    Google Scholar 

  68. Hussein OA, Habib K, Muhsan AS, Saidur R, Alawi OA, Ibrahim TK. Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Solar Energy. 2020;204:208–22.

    CAS  Google Scholar 

  69. Huminic G, Huminic A, Dumitrache F, Fleacbreveã C. Study of the thermal conductivity of hybrid nanofluids: recent research and experimental study. Powder Technol. 2020;367:347–57.

    CAS  Google Scholar 

  70. Mahyari AA, Karimipour A, Afrand M. Effects of dispersed added graphene oxide-silicon carbide nanoparticles to present a statistical formulation for the mixture thermal properties. Phys A. 2019;521:98–112.

    CAS  Google Scholar 

  71. Safaei MR, Ranjbarzadeh R, Hajizadeh A, Bahiraei M, Afrand M, Karimipour A. Simultaneous effects of cobalt ferrite and silica nanoparticles on the thermal conductivity of antifreeze: new hybrid nanofluid for refrigeration condensers. Int J Refrig. 2019;102:86–95.

    CAS  Google Scholar 

  72. Kannaiyan S, Boobalan C, Nagarjan FC, Sivaraman S. Modeling of thermal conductivity and density of alumina/silica in water hybrid nanocolloid by the application of artificial neural networks. Chin J Chem Eng. 2019;27(3):726–36.

    CAS  Google Scholar 

  73. Rostami S, Nadooshan AA, Raisi A. An experimental study on the thermal conductivity of new antifreeze containing copper oxide and graphene oxide nano-additives. Powder Technol. 2019;345:658–67.

    CAS  Google Scholar 

  74. Akilu S, Baheta AT, Chowdhury S, Padmanabhan E, Sharma KV. Thermophysical profile of SiC-CuO/C nanocomposite in base liquid ethylene glycol. Powder Technol. 2019;354:540–51.

    CAS  Google Scholar 

  75. Sulgani MT, Karimipour A. Improve the thermal conductivity of 10w40-engine oil at various temperature by addition of Al2O3/Fe2O3 nanoparticles. J Mol Liq. 2019;283:660–6.

    Google Scholar 

  76. Sarode HA, Barai DP, Bhanvase BA, Ugwekar RP, Saharan V. Investigation on preparation of graphene oxide-CuO nanocomposite based nanofluids with the aid of ultrasound assisted method for intensified heat transfer properties. Mater Chem Phys. 2020;251:123102.

    CAS  Google Scholar 

  77. Tian XX, Kalbasi R, Qi C, Karimipour A, Huang HL. Efficacy of hybrid nano-powder presence on the thermal conductivity of the engine oil: an experimental study. Powder Technol. 2020. https://doi.org/10.1016/j.powtec.2020.05.004.

    Article  Google Scholar 

  78. Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A. Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: experimental approach. Int Commun Heat Mass Transf. 2017;87:30–9.

    CAS  Google Scholar 

  79. Moldoveanu GM, Minea AA, Huminic G, Huminic A. Al2O3/TiO2 hybrid nanofluids thermal conductivity. J Therm Anal Calorim. 2019;137:583–92.

    CAS  Google Scholar 

  80. Geng Y, Al-Rashed AAAA, Mahmoudi B, Alsagri AS, Shahsavar A, Talebizadehsardari P. Characterization of the nanoparticles, the stability analysis and the evaluation of a new hybrid nano-oil thermal conductivity. J Therm Anal Calorim. 2020;139:1553–64.

    CAS  Google Scholar 

  81. Singh J, Kumar R, Gupta M, Kumar H. Thermal conductivity analysis of GO-CuO/DW hybrid nanofluid. Mat Today Proc. 2020;28:1714–8.

    CAS  Google Scholar 

  82. Soltani F, Toghraie D, Karimipour A. Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions. Powder Technol. 2020;371:37–44.

    CAS  Google Scholar 

  83. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    CAS  Google Scholar 

  84. Selvaraj V, Krishnan H. Synthesis of graphene encased alumina and its application as nanofluid for cooling of heat-generating electronic devices. Powder Technol. 2020;363:665–75.

    CAS  Google Scholar 

  85. Raquel de Oliveira L, Ribeiro SRFL, Reis MHM, Cardoso VL, Filho EPB. Experimental study on the thermal conductivity and viscosity of ethylene glycol-based nanofluid containing diamond-silver hybrid material. Diamond Rel Mater. 2019;96:216–30.

    Google Scholar 

  86. Dalkilic SA, Yalcin G, Kucukyildirim BO, Oztuna S, Eker AA, Jumpholkul C, Nakkaew S, Wongwises S. Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. Int Commun Heat Mass Transf. 2018;99:18–25.

    CAS  Google Scholar 

  87. Tawfik MM. Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew Sustain Energy Rev. 2017;75:1239–53.

    CAS  Google Scholar 

  88. Yarmand H, et al. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf. 2016;77:15–21.

    CAS  Google Scholar 

  89. Mousavi SM, Esmaeilzadeh F, Wang XP. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid. J Therm Anal Calorim. 2019;137:879–901.

    CAS  Google Scholar 

  90. Jha N, Ramaprabhu S. Thermal conductivity studies of metal dispersed multi-walled carbon nanotubes in water and ethylene glycol based nanofluids. J Appl Phys. 2009;106:084317.

    Google Scholar 

  91. Zeng J, Xuan Y. Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Appl Energy. 2018;212:809–19.

    CAS  Google Scholar 

  92. Tong Y, Boldoo T, Ham J, Cho H. Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid. Energy. 2020;196:117086.

    CAS  Google Scholar 

  93. Mousavi SM, Esmaeilzadeh F, Wang XP. A detailed investigation on the thermo-physical and rheological behavior of MgO/TiO2 aqueous dual hybrid nanofluid. J Mol Liq. 2019;282:323–39.

    CAS  Google Scholar 

  94. Balaga R, Ramji K, Subrahmanyam T, Babu KR. Effect of temperature, total weight concentration and ratio of Fe2O3 and f-MWCNTs on thermal conductivity of water based hybrid nanofluids. Mater Today Proc. 2019;18:4992–9.

    CAS  Google Scholar 

  95. Hamid KA, Azmi WH, Nabil MF, Mamat R, Sharma KV. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int J Heat Mass Transf. 2018;116:1143–52.

    CAS  Google Scholar 

  96. Wole-Osho I, Okonkwo EC, Adun H, Kavaz D, Abbasoglu S. An intelligent approach to predicting the effect of nanoparticle mixture ratio, concentration and temperature on thermal conductivity of hybrid nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09594-y.

    Article  Google Scholar 

  97. Mechiri SK, Vasu V, Gopal AV. Investigation of thermal conductivity and rheological properties of vegetable oil based hybrid nanofluids containing Cu-Zn hybrid nanoparticles. Exp Heat Transf. 2017;30(3):205–17.

    CAS  Google Scholar 

  98. Khalid S, Zakaria I, Azmi WH, Mohamed WANW. Thermal-electrical-hydraulic properties of Al2O3-SiO2 hybrid nanofluids for advanced PEM fuel cell thermal management. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09695-8.

    Article  Google Scholar 

  99. Kishore PS, Sireesha V, Harsha VS, Rao VD, Solomon AB. Preparation, characterization and thermo-physical properties of Cu-graphene nanoplatelets hybrid nanofluids. Mater Today Proc. 2020. https://doi.org/10.1016/j.matpr.2019.12.108.

    Article  Google Scholar 

  100. Sati P, Shende RC, Ramaprabhu S. An experimental study on thermal conductivity enhancement of DI water-EG based ZnO(CuO)/graphene wrapped carbon nanotubes nanofluids. Thermo Acta. 2018;666:75–81.

    CAS  Google Scholar 

  101. Kannaiyan S, Boobalan C, Umasankaran A, Ravirajan A, Sathyan S, Thomas T. Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide hybrid nanofluids. J Mol Liq. 2017;244:469–77.

    CAS  Google Scholar 

  102. Sundar LS, Singh MK, Ferro MC, Sousa ACM. Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids. Int Commun Heat Mass Transf. 2017;84:1–10.

    Google Scholar 

  103. Sundar LS, Ramana EV, Graça MPF, Singh MK, Sousa ACM. Nanodiamond-Fe3O4 nanofluids: preparation and measurement of viscosity, electrical and thermal conductivities. Int Commun Heat Mass Transf. 2016;73:62–74.

    CAS  Google Scholar 

  104. Ambreen T, Kim MH. Influence of particle size on the effective thermal conductivity of nanofluids: a critical review. Appl Energy. 2020;264:114684.

    CAS  Google Scholar 

  105. Qing SH, Rashmi W, Khalid M, Gupta TCSM, Nabipoor M, Hajibeigy HT. Thermal conductivity and electrical properties of hybrid SiO4-graphene naphthenic mineral oil nanofluid as potential transformer oil. Mater Res Exp. 2017;4:015504.

    Google Scholar 

  106. Nasirzadehroshenin F, Pourmozafari A, Maddah H, Sakhaeinia H. Experimental and theoretical investigation of thermophysical properties of synthesized hybrid nanofluid developed by modeling approaches. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04352-6.

    Article  Google Scholar 

  107. Zendehboudi A, Saidur R, Mahbubul IM, Hosseini SH. Data-driven methods for estimating the effective thermal conductivity of nanofluids: a comprehensive review. Int J Heat Mass Transf. 2019;131:1211–31.

    CAS  Google Scholar 

  108. Rostami S, Toghraie D, Shabani B, Sina N, Barnoon P. Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09458-5.

    Article  Google Scholar 

  109. Akhgar A, Toghraie D, Sina N, Afrand M. Develo** dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Technol. 2019;355:602–10.

    CAS  Google Scholar 

  110. Safaei MR, Hajizadeh A, Afrand M, Qi C, Yarmand H, Zulkifli NWBM. Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO4/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Physica A. 2019;519:209–16.

    CAS  Google Scholar 

  111. Karimipour A, Bagherzadeh SA, Taghipour A, Abdollahi A, Safaei MR. A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data. Phys A. 2019;521:89–97.

    CAS  Google Scholar 

  112. Peng Y, Parsian A, Khodadadi H, Akbari M, Ghani K, Goodarzi M, Bach QV. Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3-Cu nanoparticles dispersed in ethylene glycol. Phys A. 2020;549:124015.

    CAS  Google Scholar 

  113. Alarifi IM, Nguyen HM, Bakhtiyari AN, Asadi A. Feasibility of ANFIS-PSO and ANFIS-GA models in predicting thermophysical properties of Al2O3-MWCNT/Oil hybrid nanofluid. Materials. 2019;12:3628.

    CAS  PubMed Central  Google Scholar 

  114. Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F, Teimouri H. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Phys E. 2017;85:90–6.

    CAS  Google Scholar 

  115. He W, Ruhani B, Toghraie D, Izadpanahi N, Esfahani NN, Karimipour A, Afrand M. Using of Artificial Neural Networks (ANNs) to predict the thermal conductivity of Zinc Oxide-Silver (50–50%)/Water hybrid Newtonian nanofluid. Int Commun Heat Mass Transf. 2020;116:104645.

    CAS  Google Scholar 

  116. Wole-Osho I, Okonkwo EC, Kavaz D, Abbasoglu S. An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al3O3-ZnO hybrid nanofluids. Powder Technol. 2020;363:699–716.

    CAS  Google Scholar 

  117. Moldoveanu GM, Minea AA. Specific heat experimental tests of simple and hybrid oxide-water nanofluids: proposing new correlation. J Mol Liq. 2019;279:299–305.

    CAS  Google Scholar 

  118. Çolak AB, Yıldız O, Bayrak M, Tezekici BS. Experimental study for predicting the specific heat of water based Cu-Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation. Int J Energy Res. 2020. https://doi.org/10.1002/er.5417.

    Article  Google Scholar 

  119. Aghahadi MH, Niknejadi M, Toghraie D. An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids. J Mol Struc. 2019;1197:497–507.

    CAS  Google Scholar 

  120. Kazemi I, Sefid M, Afrand M. A novel comparative experimental study on rheological behavior of mono and hybrid nanofluids concerned graphene and silica nano-powders: Characterization, stability and viscosity measurements. Powder Technol. 2020;366:216–29.

    CAS  Google Scholar 

  121. Asadi A, Alarifi IM, Foong LK. An experimental study on characterization, stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid. J Mol Liq. 2020;307:112987.

    CAS  Google Scholar 

  122. Esfe MH, Rostamian SH. Rheological behavior characteristics of MWCNT-TiO2/EG (40–60%) hybrid nanofluid affected by temperature, concentration, and shear rate: an experimental and statistical study and a neural network simulating. Phys A. 2020;553:124061.

    Google Scholar 

  123. Yan SR, Kalbasi R, Nguyen Q, Karimipour A. Rheological behavior of hybrid MWCNTs-TiO2/EG nanofluid: a comprehensive modeling and experimental study. J Mol Liq. 2020;308:113058.

    CAS  Google Scholar 

  124. Irani M, Afrand M, Mehmandoust B. Curve fitting on experimental data of a new hybrid nano-antifreeze viscosity: presenting new correlations for non-Newtonian nanofluid. Phys A. 2019;531:120837.

    CAS  Google Scholar 

  125. Esfe MH, Raki HR, Emami MRS, Afrand M. Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol. 2019;342:808–16.

    Google Scholar 

  126. Gulzar O, Qayoum A, Gupta R. Experimental study on stability and rheological behaviour of hybrid Al2O3–TiO2 Therminol-55 nanofluids for concentrating solar collectors. Powder Technol. 2019;352:436–44.

    CAS  Google Scholar 

  127. Esfe MH, Esfandeh S, Niazi S. An experimental investigation, sensitivity analysis and RSM analysis of MWCNT(10)-ZnO(90)/10W40 nanofluid viscosity. J Mol Liq. 2019;288:111020.

    Google Scholar 

  128. Vallejo JP, Sani E, Zyla G, Lugo L. Tailored silver/graphene nanoplatelet hybrid nanofluids for solar applications. J Mol Liq. 2019;296:112007.

    CAS  Google Scholar 

  129. Moldoveanu GM, Ibanescu C, Danu M, Minea AA. Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: an experimental study. J Mol Liq. 2018;253:188–96.

    CAS  Google Scholar 

  130. Moldoveanu GM, Minea AA, Iacob M, Ibanescu C, Danu M. Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid. Thermochim Acta. 2018;659:203–12.

    CAS  Google Scholar 

  131. Nadooshan AA, Eshgarf H, Afrand M. Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. J Mol liq. 2018;253:169–77.

    Google Scholar 

  132. Alirezaie A, Saedodin S, Esfe MH, Rostamian SH. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO: engine oil hybrid nanofluids and modelling the results with artificial neural networks. J Mol Liq. 2017;241:174–81.

    Google Scholar 

  133. Alarifi IM, Alkouh AB, Ali V, Nguyen MH, Asadi A. On the rheological properties of MWCNT-TiO2 /oil hybrid nanofluid: an experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles. Powder Technol. 2019;355:157–62.

    CAS  Google Scholar 

  134. Nafchi PM, Karimipour A, Afrand M. The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties. Phys A. 2019;516:1–18.

    CAS  Google Scholar 

  135. Esfe MH, Abad ATK, Fouladi M. Effect of suspending optimized ratio of nano-additives MWCNT-Al2O3 on viscosity behavior of 5W50. J Mol Liq. 2019;285:572–85.

    Google Scholar 

  136. Ghaffarkhah A, Bazzi A, Dijve** ZA, Talebkeikhah M, Moraveji MK, Agin F. Experimental and numerical analysis of rheological characterization of hybrid nano-lubricants containing COOH-Functionalized MWCNTs and oxide nanoparticles. Int Commun Heat Mass Transf. 2019;101:103–15.

    CAS  Google Scholar 

  137. Esfe MH, Dalir R, Bakhtiari R, Afrand M. Simultaneous effects of multi-walled carbon nanotubes and copper oxide nanoparticles on the rheological behavior of cooling oil: application for refrigeration systems. Int J Refrig. 2019;104:123–33.

    CAS  Google Scholar 

  138. Shababi K, Firouzi M, Fakhar A. An experimental study on rheological behavior of SAE50 engine oil. J Therm Anal Calorim. 2018;131:2311–20.

    CAS  Google Scholar 

  139. Zareie A, Akbari M. Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: an experimental study. J Mol Liq. 2017;230:408–14.

    CAS  Google Scholar 

  140. Esfe MH, Sarlak MR. Experimental investigation of switchable behavior of CuO-MWCNT (85-15%)/10W-40 hybrid nano-lubricants for applications in internal combustion engines. J Mol Liq. 2017;242:326–35.

    Google Scholar 

  141. Moghaddam MA, Motahari K. Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT-CuO (30–70)/SAE40 hybrid nano-lubricant. Appl Therm Engg. 2017;123:1419–33.

    CAS  Google Scholar 

  142. Esfe MH, Rostamian H, Sarlak MR, Rejvani M, Alirezaie A. Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating. Phys E. 2017;94:231–40.

    Google Scholar 

  143. Esfe MH, Karimipour R, Arani AAA, Shahram J. Experimental investigation on non-Newtonian behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant affected by alterations of temperature, concentration and shear rate for engine applications. Int Commun Heat Mass Transf. 2017;82:97–102.

    Google Scholar 

  144. Nadooshan AA, Esfe MH, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Physica E. 2017;92:47–54.

    Google Scholar 

  145. Esfe MH, Rostamian H, Sarlak MR. A novel study on rheological behavior of ZnO-MWCNT/10w40 nanofluid for automotive engines. J Mol Liq. 2018;254:406–13.

    Google Scholar 

  146. Ranjbarzadeh R, Akhgar A, Musivand S, Afrand M. Effects of graphene oxide-silicon oxide hybrid nanomaterials on rheological behavior of water at various time durations and temperatures: synthesis, preparation and stability. Powder Technol. 2018;335:375–87.

    CAS  Google Scholar 

  147. Esfe MH, Arani AAA, Madadi MR, Alirezaie A. A study on rheological characteristics of hybrid nano-lubricants containing MWCNT-TiO2 nanoparticles. J Mol Liq. 2018;260:229–36.

    Google Scholar 

  148. Esfe MH, Zabihi F, Rostamian H, Esfandeh S. Experimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposes. J Mol Liq. 2018;249:677–87.

    Google Scholar 

  149. Motahari K, Moghaddam MA, Moradian M. Experimental investigation and development of new correlation for influences of temperature and concentration on dynamic viscosity of MWCNT-SiO2 (20–80)/20W50 hybrid nano-lubricant. Chin J Chem Eng. 2018;26(1):152–8.

    CAS  Google Scholar 

  150. Esfe MH, Rostamian H, Rejvani M, Emami MRS. Rheological behavior characteristics of ZrO2-MWCNT/10w40 hybrid nano-lubricant affected by temperature, concentration, and shear rate: an experimental study and a neural network simulating. Phys E. 2018;102:160–70.

    Google Scholar 

  151. Esfe MH, Arani AAA, Esfandeh S. Experimental study on rheological behavior of monograde heavy-duty engine oil containing CNTs and oxide nanoparticles with focus on viscosity analysis. J Mol Liq. 2018;272:319–29.

    Google Scholar 

  152. Esfe MH, Arani AAA, Esfandeh S. Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl Therm Engg. 2018;143:493–506.

    Google Scholar 

  153. Asadi A, Alarifi IM, Nguyen HM, Moayedi H. Feasibility of least-square support vector machine in predicting the effects of shear rate on the rheological properties and pum** power of MWCNT-MgO/oil hybrid nanofluid based on experimental data. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09279-6.

    Article  Google Scholar 

  154. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT-alumina/water (80%)-ethylene-glycol (20%). J Therm Anal Calorim. 2018;132:1001–15.

    CAS  Google Scholar 

  155. Aghaei A, Khorasanizadeh H, Sheikhzadeh GA. Measurement of the dynamic viscosity of hybrid engine oil -Cuo-MWCNT nanofluid, development of a practical viscosity correlation and utilizing the artificial neural network. Heat Mass Transf. 2018;54:151–61.

    CAS  Google Scholar 

  156. Esfe MH, Emami MRS, Amiri MK. Experimental investigation of effective parameters on MWCNT-TiO2/SAE50 hybrid nanofluid viscosity. J Therm Anal Calorim. 2019;137:743–57.

    Google Scholar 

  157. Rejvani M, Saedodin S, Vahedi SM, Wongwises S, Chamkha AJ. Experimental investigation of hybrid nano-lubricant for rheological and thermal engineering applications. J Therm Anal Calorim. 2019;138:1823–39.

    CAS  Google Scholar 

  158. Goodarzi M, Toghraie D, Reiszadeh M, Afrand M. Experimental evaluation of dynamic viscosity of ZnO-MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration. J Therm Anal Calorim. 2019;136:513–25.

    CAS  Google Scholar 

  159. Rostami S, Nadooshan AA, Raisi A. The effect of hybrid nano-additive consists of graphene oxide and copper oxide on rheological behavior of a mixture of water and ethylene glycol. J Therm Anal Calorim. 2020;139:2353–64.

    CAS  Google Scholar 

  160. Esfe MH. On the evaluation of the dynamic viscosity of non-Newtonian oil based nanofluids. J Therm Anal Calorim. 2019;135:97–109.

    Google Scholar 

  161. Esfe MH, Kamyab MH. Viscosity analysis of enriched SAE50 by nanoparticles as lubricant of heavy-duty engines. J Therm Anal Calorim. 2019;140:79–93.

    Google Scholar 

  162. Tian Z, et al. Prediction of rheological behavior of a new hybrid nanofluid consists of copper oxide and multi wall carbon nanotubes suspended in a mixture of water and ethylene glycol using curve-fitting on experimental data. Phys A. 2020;549:124101.

    CAS  Google Scholar 

  163. Giwa SO, Sharifpur M, Goodarzi M, Alsulami H, Meyer JP. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina-ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09372-w.

    Article  Google Scholar 

  164. Sahoo RR, Kumar V. Development of a new correlation to determine the viscosity of ternary hybrid nanofluid. Int Commun Heat Mass Transf. 2020;111:104451.

    CAS  Google Scholar 

  165. Ruhani B, Toghraie D, Hekmatifar M, Hadian M. Statistical investigation for develo** a new model for rheological behavior of ZnO-Ag (50%-50%)/Water hybrid Newtonian nanofluid using experimental data. Phys A. 2019;525:741–51.

    CAS  Google Scholar 

  166. Dalkilic SA, et al. Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. Int Commun Heat Mass Transf. 2018;97:30–8.

    CAS  Google Scholar 

  167. Esfe MH, Goodarzi M, Reiszadeh M, Afrand M. Evaluation of MWCNTs-ZnO/5W50 nanolubricant by design of an artificial neural network for predicting viscosity and its optimization. J Mol Liq. 2019;277:921–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mohd Yahya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parashar, N., Yahya, S.M. Thermophysical and rheological properties of hybrid nanofluids: a review on recent studies. J Therm Anal Calorim 147, 4411–4449 (2022). https://doi.org/10.1007/s10973-021-10854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10854-8

Keywords

Navigation