Log in

Thermal performance analysis of a low volume fraction Al2O3 and deionized water nanofluid on solar parabolic trough collector

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work analyzes the performance of unshielded receiver tube integrated solar parabolic trough collector where Al2O3/deionized (DI) water nanofluid of low concentrations was used as heat transfer fluid (HTF) element. Nanofluid is synthesized at various volume fractions starting from 0.2 to 1.0% with surfactant-free condition, by ultrasonic technique. Several researchers investigated the performance of higher nanofluid concentrations (1.0–5.0%) with and without surfactants on parabolic trough solar collector. The outdoor experiments are conducted for two HTF flow rates of 0.010 kg s−1 and 0.015 kg s−1. When the nanofluid is subjected as HTF, the DI water acted as a base fluid. While DI water is allowed to flow through the absorber, it performs both as HTF and heat storage fluid. The synthesized nanofluid at various volume fractions is allowed to flow through the receiver for the purpose of analyzing the thermal performance and compare the results with DI water. The collector efficiency increases with the mass flow rate as well as the concentration of nanofluid. For 0.015 kg s−1, the maximum efficiency was calculated as 59.13% (hourly) and 58.68% (average).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Area (m2)

CR:

Concentration ratio (−)

DI:

Deionized (−)

D :

Diameter (−)

F, R :

Factor (−)

HTF:

Heat transfer fluid (−)

I :

Radiation (W m−2)

K :

Thermal conductivity (W m−1 K−1)

K(θ):

Incident angle modifier

L :

Aperture length (m)

m :

Mass (g)

Nu:

Nusselt number (−)

Pr:

Prandtl number (−)

Q :

Heat gain (W)

Re:

Reynolds number (−)

S :

Solar flux (W m−2)

SPTC:

Solar parabolic trough collector (−)

T :

Temperature (°C)

U, h :

Coefficient (W m−2 K−1)

USR:

Unshielded receiver (−)

V :

Volume (m3)

W :

Aperture width (m)

a :

Aperture, ambient

b :

Beam, tilt

bf:

Base fluid

fi:

Nanofluid inlet, inside heat transfer

fo:

Nanofluid outlet

i :

Inner

ins:

Instantaneous

l :

Heat loss

np:

Nanoparticle

opt:

Optical

r :

Radiation loss

R :

Heat removal

Ω :

Hour angle

ɸ :

Volume fraction

η :

Efficiency

:

Reflectivity

u :

Useful

w :

Wind loss

θ :

Incident angle

τ :

Transmittance

α :

Absorptance

ϒ :

Intercept factor

σ :

Stefan–Boltzmann constant

εr :

Emissivity

References

  1. Kalogirou SA, Lloyd S. Use of solar parabolic trough collectors for hot water production in Cyprus—a feasibility study. Renew Energy. 1992;12:117–24.

    Article  Google Scholar 

  2. Nithyanandam K, Pitchumani R. Optimization of an encapsulated phase change material Thermal energy storage system. Sol Energy. 2014;107:770–88.

    Article  Google Scholar 

  3. Sheikholeslami M, Jafaryar M, Shafee A, Babazzadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous form considering nanoparticle enhanced paraffin. J Clean Prod. 2020;261:121206.

    Article  CAS  Google Scholar 

  4. Vijayan G, Karunakaran R. Investigation of heat transfer performance of nanofluids on conical solar collector under dynamic condition. Adv Mater Res. 2014;985:1125–31.

    Article  Google Scholar 

  5. Vijayan G, Karunakaran R. Experimental investigation on PTSC hot water generation system. J Adv Chem. 2017;13:6054–8.

    Google Scholar 

  6. Valanarasu A, Sornakumar SM. Theoretical analysis and experimental verification of parabolic trough solar collector with hot water generation system. Therm Sci. 2007;11(1):119–26.

    Article  Google Scholar 

  7. Valanarasu A, Sornakumar SM. Performance characteristics of the solar parabolic trough collector with hot water generation system. Therm Sci. 2006;10(2):167–74.

    Article  Google Scholar 

  8. Bellos E, Tzivanidis C, Antonopoulos KA. A detailed working fluid investigation for solar parabolic trough collectors. Appl Therm Eng. 2016;114:374–86.

    Article  Google Scholar 

  9. Bellos E, Tzivanidis C. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J Therm Anal Calorim. 2019;135(1):597–608.

    Article  CAS  Google Scholar 

  10. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2019;135(1):763–86.

    Article  CAS  Google Scholar 

  11. Vijayan G, Karunakaran R. Characteristic analysis of de-ionised water and ethylene glycol based aluminum oxide nanofluid. J Adv Chem. 2017;13(5):6202–7.

    Google Scholar 

  12. Murshed SMS, Leong KC, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 2008;47:560–8.

    Article  CAS  Google Scholar 

  13. Sadaghiyani OM, Sadegi A, Khalileria S, Mirzaee I. Two new designs of parabolic solar collectors. Therm Sci. 2014;18(2):323–34.

    Google Scholar 

  14. Stefanovic VP, Bojic M. Development and investigation of solar collectors for conversion of solar radiation into heat and/or electricity. Therm Sci. 2006;10(4):177–87.

    Article  Google Scholar 

  15. Marco P, Marco M, Gianpiero C, Arturo DR. Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid. Appl Energy. 2017;203(1):560–70.

    Google Scholar 

  16. Visconti P, Primiceri P, Costantini P, Cavalera G. Measurement and control system for thermosolar plant and performance comparison between traditional and nanofluid solar thermal collectors. Int J Smart Sens Intell Syst. 2016;9(3):681–708.

    Google Scholar 

  17. Colangelo G, Milanese M, Risi AD. Numerical simulation of thermal efficiency of an innovative Al2O3 nanofluid solar thermal collector: influence of nanoparticles concentration. Therm Sci. 2017;21(6B):2769–79.

    Article  Google Scholar 

  18. Ghasemi SE, Ranjbar AA. Effect of nanoparticles in working fluid on thermal performance of solar parabolic trough collector. J Mol Liq. 2016;222:159–66.

    Article  CAS  Google Scholar 

  19. Subramani J, Nagarajan PK, Wongwises S, El-Agouz SA, Sathyamurthy R. Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids. Environ Prog Sustain Energy. 2018;37:1149–59.

    Article  CAS  Google Scholar 

  20. Khan MS, Abid M, Ratlamwala TAH. Energy, exergy and economic feasibility analyses of a 60 MW conventional steam power plant integrated with parabolic trough solar collectors using nanofluids. Iran J Sci Technol Trans Mech Eng 2017;1–17.

  21. Thomas A. Simple structure for parabolic trough concentrator. Energy Convers Manag. 1994;35:569–73.

    Article  Google Scholar 

  22. Kalogirou SA. Parabolic trough collector system for low-temperature steam generation: design and performance characteristics. Appl Energy. 1996;55:1–19.

    Article  Google Scholar 

  23. Kumaresan G, Rahulram S, Velraj R. Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy. 2012;47:395–402.

    Article  Google Scholar 

  24. Vijayan G, Karunakaran R. Performance evaluation of nanofluid on parabolic trough solar collector. Therm Sci. 2020;24(2A):853–64.

    Article  Google Scholar 

  25. Senthil R, Cheralathan M. Effect of non-uniform temperature distribution on surface absorption receiver in parabolic dish solar concentrator. Therm Sci. 2017;21(4):2011–9.

    Article  Google Scholar 

  26. Senthil R, Cheralathan M. Enhancement of the thermal energy storage capacity of a parabolic dish concentrated solar receiver using phase change materials. J Energy Storage. 2019;25:100841.

    Article  Google Scholar 

  27. Farshad SA, Sheikholeslami M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy. 2019;141:246–58.

    Article  CAS  Google Scholar 

  28. Duffie JA, Beckman WA. Solar engineering of thermal processes. New York: John Wiley and Sons; 1991.

    Google Scholar 

  29. Brooks MJ, Mills I, Harms TM. Performance of a parabolic trough solar collector. J Energy South Afr. 2006;17(3):71–80.

    Article  Google Scholar 

  30. Filonienko GK. Friction factor for turbulent pipe flow. Teploenergetika. 1954;1(4):40–4.

    Google Scholar 

  31. Gnielinski V. New equations for heat and mass transfer in the turbulent pipe and channel flow. Int J Chem Eng. 1976;16:359–68.

    Google Scholar 

  32. Kline S, McClintock F. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  33. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  34. Senthil R. Thermal performance of aluminum oxide based nanofluids in flat plate solar collector. Int J Eng Adv Technol. 2019;8(3):445–8.

    Google Scholar 

  35. Khullar V, Tyagi H. Application of nanofluids as the working fluid in concentrating parabolic solar collectors. In: Proceedings of international conference on fluid mechanics and Fluid power. IIT Madras, Chennai, 2010; 1–9.

  36. Singh H. Singh PA review paper on performance improvement of parabolic trough collector system. J Appl Mech Eng. 2015;4(2):1–10.

    Article  Google Scholar 

  37. Rasih RA, Sidik NAC, Samion S. Recent progress on concentrating direct absorption solar collector using nanofluids: a review. J Therm Anal Calorim. 2019;137(3):903–22.

    Article  CAS  Google Scholar 

  38. Kalogirou S. Parabolic trough collector system for low temperature steam generation: design and performance characteristics. Appl Energy. 1996;55(1):1–19.

    Article  Google Scholar 

  39. Murphy LM., Keneth E. Steam generation in line-focus solar collectors: A comparative assessment of thermal performance, operating stability, and cost issues. In: SERI/TR-1311; 1982. https://doi.org/10.2172/5247106.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vijayan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, G., Shantharaman, P.P., Senthil, R. et al. Thermal performance analysis of a low volume fraction Al2O3 and deionized water nanofluid on solar parabolic trough collector. J Therm Anal Calorim 147, 753–762 (2022). https://doi.org/10.1007/s10973-020-10313-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10313-w

Keywords

Navigation