Log in

Photothermal investigations of phase transitions in liquid thermoelectrics

Application to dodecanol mixed with tetrabutylammonium nitrate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two photothermal techniques, the photothermoelectric (PTE) and the photopyroelectric (PPE) were applied to detect first-order phase transitions in some liquid thermoelectric (LTE) material. Due to its large Seebeck coefficient (about 4–5 mV K−1), a LTE based on dodecanol mixed with 10−1 mol L−1 tetrabutylammonium nitrate was selected for investigations. If the PPE method was already largely used to detect phase transitions in various materials belonging to condensed matter, the Seebeck effect, produced by a LTE, is used for the first time as a tool for the detection of phase transitions in the very same material. It was demonstrated that both methods are suitable to detect the first-order phase transitions in LTE materials, but in the case of PTE method the electrical and thermal effects at the phase transition can not be separated, and consequently, it is not possible to derive the critical behavior of the thermal parameters. However, the behavior of the static volume specific heat and dynamic thermal diffusivity, effusivity and conductivity of the investigated LTE could be obtained by using the PPE method in back detection configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stanley HE. Introduction to phase transitions and critical phenomena. New York Oxford: Oxford University Press; 1971.

    Google Scholar 

  2. Dadarlat D, Bicanic D, Visser H, Mercuri F, Frandas A. Photopyroelectric method for determination of thermophysical parameters and detection of phase transitions in fatty acids and triglycerides. Part I: principles, theory and instrumentational concepts. J Am Oil Chem Soc. 1995;74:273.

    Article  Google Scholar 

  3. Dadarlat D, Bicanic D, Gibkes J, Kloek W, Dries I, Gherkema E. Study of melting processes in fatty acids and oil mixtures: a comparison of photopyroelectric (PPE) and differential scanning calorimetry (DSC). Chem Phys Lipids. 1996;82:15.

    Article  CAS  Google Scholar 

  4. Dadarlat D, Riezebos KJ, Bicanic D, van den Berg C, Gerkema E, Surducan V. Photopyroelectric study of diluted and concentrated sugar systems. Application to aqueous solutions of maltose, glucose and maltodextrine, and to honey of varying moisture content. Adv Food Sci (CMTL). 1998;20:27.

    CAS  Google Scholar 

  5. Kuriakose M, Depriester M, Chan Yu King R, Roussel F, Hadj Sahraoui A. Photothermoelectric effect as a means for thermal characterization of nanocomposites based on intrinsically conducting polymers and carbon nanotubes. J Appl Phys. 2013;113:044502.

    Article  Google Scholar 

  6. Dadarlat D, Streza M, Chan Yu King R, Roussel F, Kuriakose M, Depriester M, Guilmeau E, Hadj Sahraoui A. The photothermoelectric technique (PTE), analternative photothermal calorimetry. Meas Sci Technol. 2014;25:015603.

    Article  Google Scholar 

  7. Dadarlat D, Tudoran C, Surducan V, Bourgès C, Lemoine P, Guilmeau E. Photothermoelectric (PTE) detection of phase transitions: application to triglycinesulphate (TGS). Thermochim Acta. 2016;624:21–6.

    Article  CAS  Google Scholar 

  8. Dadarlat D, Guilmeau E, Hadj Sahraoui A, Tudoran C, Surducan V, Bourgès C, Lemoine P. Photothermoelectric (PTE) versus photopyroelectric (PPE) detection of phase transitions. Int J Thermophys. 2016;37:53.

    Article  Google Scholar 

  9. Dadarlat D, Tripon C. A new application of the liquid thermoelectrics: the detection of magnetic phase transitions. Thermochim Acta. 2018;667:160.

    Article  CAS  Google Scholar 

  10. Dadarlat D, Chicea D, Houriez N, Delenclos S, Longuemart S, Hadj Sahraoui A. Alternative photopyroelectric detection method of phase transitions in ferroelectric materials. Optoelectron Adv Mater Rapid Commun (OAM-RC). 2009;3:323.

    CAS  Google Scholar 

  11. Dadarlat D, Longuemart S, Hadj Sahraoui A. Characterization of ferroelectric materials by photopyroelectric method. In: Lallart M, editor. Ferroelectrics-characterization and modeling. INTECH; 2011. p. 281–304.

  12. Bonetti M, Nakamae S, Roger M, Guenoun P. Huge Seebeck coefficients in non-aqueous electrolytes. J Chem Phys. 2011;134:114513.

    Article  CAS  Google Scholar 

  13. Mandelis A. Diffusion-wave fields. Mathematical methods and green functions. New York: Springer; 2001.

    Book  Google Scholar 

  14. Dadarlat D, Neamtu C. High accuracy photopyroelectric calorimetry of liquids. Acta Chim Slov. 2009;56:225.

    CAS  Google Scholar 

  15. Dadarlat D. Photopyroelectric calorimetry of liquids: recent development and applications. Laser Phys. 2009;19:1330.

    Article  CAS  Google Scholar 

  16. Touati K, Depriester M, Hadj Sahraoui A, Tripon C, Dadarlat D. Combined photopyroelectric-photothermoelectric detection for thermal characterization of liquid thermoelectrics. Thermochim Acta. 2016;642:39.

    Article  CAS  Google Scholar 

  17. Dadarlat D, Tripon C, Tosa V. On the photothermal characterization of liquid thermoelectrics. New methodology based on coupled pyroelectric-Seebeck effects, together with frequency and thickness scanning procedures. Thermochimica Acta. 2017;653:133.

    Article  CAS  Google Scholar 

  18. Zammit U, Mercuri F, Paoloni S, Marinelli M, Pizzoferrato R. Simultaneous absolute measurements of the thermal diffusivity and the thermal effusivity in solids and liquids using photopyroelectric calorimetry. J Appl Phys. 2015;117:105104.

    Article  Google Scholar 

  19. Zammit U, Paoloni S, Mercuri F, Marinelli M, Scudieri F. Self consistently calibrated photopyroelectric calorimeter for the high resolution simultaneous absolute measurement of the specific heat and of the thermal conductivity. AIP Adv. 2012;2:012135.

    Article  Google Scholar 

  20. Marinelli M, Mercuri F, Zammit U, Pizzoferrato R, Scudieri F, Dadarlat D. Photopyroelectric study of specific heat, thermal conductivity, and thermal diffusivity of Cr2 O3 at the Néel transition. Phys Rev B. 1994;49:9523–32.

    Article  CAS  Google Scholar 

  21. Marinelli M, Murtas F, Mecozzi MG, Zammit U, Pizzoferrato R, Scudieri F, et al. Simultaneous determination of specific heat, thermal conductivity and thermal diffusivity at low temperature via the photopyroelectric technique. Appl Phys A. 1990;51:1630.

    Article  Google Scholar 

  22. Shen J, Mandelis A. Thermal-wave resonator cavity. Rev Sci Instrum. 1995;66:4999.

    Article  CAS  Google Scholar 

  23. Shen J, Mandelis A, Tsai H. Signal generation mechanisms, intracavity-gas thermal-diffusivity temperature dependence, and absolute infrared emissivity measurements in a thermal-wave resonant cavity. Rev Sci Instrum. 1998;69:197.

    Article  CAS  Google Scholar 

  24. Balderas-Lopez JA, Mandelis A, Garcia JA. Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev Sci Instrum. 2000;71:2933.

    Article  CAS  Google Scholar 

  25. Chirtoc M, Antoniov JS, Egee M. The effective thermal thickness: a new concept for photothermal investigations of layered systems. In: Proceeding of 10-th international conference on photoacoustic and photothermal phenomena, Rome; 1998. p. 84.

Download references

Acknowledgements

This work was financially supported by Romanian Ministry of Research and Innovation, through the Core Program (Program Nucleu), Project No. PN 19 35 02 01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tripon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripon, C., Depriester, M., Craciunescu, I. et al. Photothermal investigations of phase transitions in liquid thermoelectrics. J Therm Anal Calorim 138, 713–720 (2019). https://doi.org/10.1007/s10973-019-08133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08133-8

Keywords

Navigation