Log in

Preparation and thermal characterization of sodium acetate trihydrate/expanded graphite composite phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The sodium acetate trihydrate (SAT)/expanded graphite (EG) composite phase change material (PCM) was firstly prepared by absorbing liquid SAT into a porous network of EG, in which SAT acted as the PCM. EG prepared at microwave irradiation power of 800 W for 30 s with maximum volumes has the largest sorption capacity for SAT. At the mass fraction of SAT <95 %, SAT uniformly disperse in the pores of EG without liquid leakage evidenced from scanning electron microscopy characterization. X-ray diffraction results further show that PCM is just a combination between SAT and EG without any chemical reaction. Differential scanning calorimeter measurements indicate that the melting temperature and latent heat of the composite PCM are 59.5 °C and 202 J g−1, respectively, close to those of pure SAT. The thermal conductivity of the composite PCM can be as high as 1.589 W m−1 K−1.The form-stable SAT/EG composite with SAT mass fraction of 95 % has great potential in thermal energy storage due to its moderate melting point, significant latent heat storage capacity, form-stable property, direct usability without need for an extra storage container, and high thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45.

    Article  CAS  Google Scholar 

  2. Zalba B. Maŕin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.

    Article  CAS  Google Scholar 

  3. Karaman S, Karaipekli A, Sari A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol C. 2011;95(7):1647–53.

    Article  CAS  Google Scholar 

  4. **ao JB, Huang J, Zhu PP, Wang CH, Li XX. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material. Thermochim Acta. 2014;587:52–8.

    Article  CAS  Google Scholar 

  5. **ao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy. 2013;112(SI):1357–66.

    Article  CAS  Google Scholar 

  6. Xu BW, Li ZJ. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy. 2013;105:229–37.

    Article  CAS  Google Scholar 

  7. Kim T, France DM, Yu WH, Zhao WH, Singh D. Heat transfer analysis of a latent heat thermal energy storage system using graphite foam for concentrated solar power. Sol Energy. 2014;103:438–47.

    Article  CAS  Google Scholar 

  8. Stritih U, Osterman E, Evliya H, Butala V, Paksoy H. Exploiting solar energy potential through thermal energy storage in Slovenia and Turkey. Renew Sustain Energy Rev. 2013;25:442–61.

    Article  Google Scholar 

  9. Kong LB, Li T, Hng HH, Boey F, Zhang TS, Li S. Waste thermal energy harvesting (III): storage with phase change materials. In: Waste energy harvesting. Berlin: Springer; 2014. p. 481–592.

    Chapter  Google Scholar 

  10. López-Sabirón AM, Royo P, Ferreira VJ, Aranda-Usón A, Ferreira G. Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption. Appl Energy. 2014;135:616–24.

    Article  Google Scholar 

  11. Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev. 2011;15(3):1675–95.

    Article  CAS  Google Scholar 

  12. Tyagi VV, Buddhi D, Kothari R, Tyagi SK. Phase change material (PCM) based thermal management system for cool energy storage application in building: an experimental study. Energy Build. 2012;51:248–54.

    Article  Google Scholar 

  13. Yuan YG, Yuan YP, Zhang N, Du YX, Cao XL. Preparation and thermal characterization of capric–myristic–palmitic acid/expanded graphite composite as phase change material for energy storage. Mater Lett. 2014;125:154–7.

    Article  CAS  Google Scholar 

  14. Mesalhy O, Lafdi K, Elgafy A. Carbon foam matrices saturated with PCM for thermal protection purposes. Carbon. 2006;44(10):2080–8.

    Article  CAS  Google Scholar 

  15. Li WQ, Qu ZG, He YL, Tao WQ. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin. Appl Therm Eng. 2012;37:1–9.

    Article  Google Scholar 

  16. Karaipekli A, Sarı A. Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew Energy. 2008;33(12):2599–605.

    Article  CAS  Google Scholar 

  17. Karaipekli A, Sarı A. Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol Energy. 2009;83(3):323–32.

    Article  CAS  Google Scholar 

  18. Li M, Wu ZS, Kao HT. Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials. Appl Energy. 2011;88(9):3125–32.

    Article  CAS  Google Scholar 

  19. Sarier N, Onder E, Ozay S, Ozkilic Y. Preparation of phase change material–montmorillonite composites suitable for thermal energy storage. Thermochim Acta. 2011;524(1):39–46.

    Article  CAS  Google Scholar 

  20. Zhang N, Yuan YP, Wang X, Cao XL, Yang XJ, Hu SC. Preparation and characterization of lauric-myristic-palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem Eng J. 2013;231:214–9.

    Article  CAS  Google Scholar 

  21. **a L, Zhang P, Wang RZ. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon. 2010;48(9):2538–48.

    Article  CAS  Google Scholar 

  22. Zhang ZG, Shi GQ, Wang SP, Fang XM, Liu XH. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renew Energy. 2013;50:670–5.

    Article  CAS  Google Scholar 

  23. Zhong LM, Zhang XW, Luan Y, Wang G, Feng YH, Feng DL. Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite. Sol Energy. 2014;107:63–73.

    Article  CAS  Google Scholar 

  24. **a L, Zhang P. Thermal property measurement and heat transfer analysis of acetamide and acetamide/expanded graphite composite phase change material for solar heat storage. Sol Energy Mater Sol C. 2011;95(8SI):2246–54.

    Article  CAS  Google Scholar 

  25. Kim S, Drzal LT. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol C. 2009;93(1):136–42.

    Article  CAS  Google Scholar 

  26. Zhang ZG, Fang XM. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energ Convers Manag. 2006;47(3):303–10.

    Article  CAS  Google Scholar 

  27. Zeng JL, Gan J, Zhu FR, Yu SB, **ao ZL, Yan WP, Zhu L, Liu ZQ, Sun LX, Cao Z. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage. Sol Energy Mater Sol C. 2014;127:122–8.

    Article  CAS  Google Scholar 

  28. Shi JN, Ger MD, Liu YM, Fan YC, Wen NT, Lin CK, Pu NW. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon. 2013;51:365–72.

    Article  CAS  Google Scholar 

  29. Wang XL, Guo QG, Zhong YJ, Wei XH, Liu L. Heat transfer enhancement of neopentyl glycol using compressed expanded natural graphite for thermal energy storage. Renew Energy. 2013;51:241–6.

    Article  CAS  Google Scholar 

  30. Yuan YP, Li TY, Zhang N, Cao XL, Yang XJ. Investigation on thermal properties of capric-palmitic –stearic acid/activated carbon composite phase change materials for high-temperature cooling application. J Therm Anal Calorim. 2015;. doi:10.1007/s1097301551730.

    Google Scholar 

  31. Liu SY, Yang HM. Stearic acid hybridizing coal-series kaolin composite phase change material for thermal energy storage. Appl Clay Sci. 2014;101:277–81.

    Article  CAS  Google Scholar 

  32. Mills A, Farid M, Selman JR, Al-Hallaj S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng. 2006;26(14–15):1652–61.

    Article  CAS  Google Scholar 

  33. Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27(8–9):1271–7.

    Article  CAS  Google Scholar 

  34. Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol C. 2009;93(5):571–6.

    Article  CAS  Google Scholar 

  35. Zhang ZG, Zhang N, Peng J, Fang XM, Gao XN, Fang YT. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy. 2012;91(1):426–31.

    Article  CAS  Google Scholar 

  36. Wang WL, Yang XX, Fang YT, Ding J, Yan JY. Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage. Appl Energy. 2009;86(9):1479–83.

    Article  CAS  Google Scholar 

  37. Fang GY, Li H, Chen Z, Liu X. Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials. Energy. 2010;35(12):4622–6.

    Article  CAS  Google Scholar 

  38. Yang XJ, Yuan YP, Zhang N, Cao XL, Liu C. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by Bei**g Natural Science Foundation (Grant No. 2132024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Qin, S., Wu, X. et al. Preparation and thermal characterization of sodium acetate trihydrate/expanded graphite composite phase change material. J Therm Anal Calorim 125, 831–838 (2016). https://doi.org/10.1007/s10973-016-5444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5444-4

Keywords

Navigation