Log in

The non-isothermal cyclization kinetics of amino-functionalized carbon nanotubes/polyacrylonitrile composites by in situ polymerization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal cyclization kinetics of amino-functionalized carbon nanotubes (amino-CNTs)/polyacrylonitrile (PAN) composites was investigated using differential scanning calorimetry (DSC) in nitrogen atmosphere. The amino-CNTs/PAN composites were prepared by in situ polymerization under ultrasonication. The X-ray diffraction analysis showed that the composites had lower degree of crystallization compared with the neat PAN homopolymer. The morphology of composites suggested that the amino-CNTs had homogeneous dispersion in the PAN matrix. The Kissinger method and Crane method were used for describing the non-isothermal cyclization reaction of the neat PAN homopolymer and the amino-CNTs/PAN composites using DSC data with different heating rates. The results showed that the addition of amino-CNTs into the neat PAN homopolymer decreased the initial temperature and the peak temperature for the cyclization reaction. The amino-CNTs/PAN composites had higher activation energy than the neat PAN homopolymer, indicating that the presence of the amino-CNTs hindered the mobility of the PAN chain segments. The n-th order for the amino-CNTs/PAN composites is more close to one than that of the neat PAN homopolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hu XP, Hsieh YL. Structure of acrylic fibres prior to cyclization. Polymer. 1997;38:1491–3.

    Article  CAS  Google Scholar 

  2. Badawy SM, Dessouki AM. Cross-linked polyacrylonitrile prepared by radiation-induced polymerization technique. J Phys Chem B. 2003;107:11273–9.

    Article  CAS  Google Scholar 

  3. Bashir Z, Rastogi S. The explanation of the increase in slope at the Tg in the plot of d-spacing versus temperature in polymerization. J Macromol Sci, Phys. 2005;44:55–78.

    Article  Google Scholar 

  4. Fazlitdinova AG, Tyumentsev VA, Podkopayev SA, Shveikin GP. Changes of polyacrylonitrile fiber fine structure during thermal stabilization. J Mater Sci. 2010;45:3998–4005.

    Article  CAS  Google Scholar 

  5. Wu SH, Qin XH. Effects of the stabilization temperature on the structure and properties of polyacrylonitrile-based stabilized electrospun nanofiber microyarns. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3530-4.

    Google Scholar 

  6. Ju Am XuH, Ge M. Preparation and thermal properties of poly[acrylonitrile-co-(β-methylhydrogen itaconate)] used as carbon fiber precursor. J Therm Anal Calorim. 2014;115(2):1037–47.

    Article  Google Scholar 

  7. Fitzer E, Muller DJ. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon. 1975;13:63–9.

    Article  CAS  Google Scholar 

  8. Devasia R, Nair CPR, Sivadasan P, Katherine BK, Ninan KN. Cyclization reaction in poly(acrylonitrile/itaconic acid) copolymer: an isothermal differential scanning calorimetry. J Appl Polym Sci. 2003;88:915–20.

    Article  CAS  Google Scholar 

  9. Ouyang Q, Cheng L, Wang HJ, Li KX. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab. 2008;93:1415–21.

    Article  CAS  Google Scholar 

  10. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  11. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature. 1996;382:54–6.

    Article  CAS  Google Scholar 

  12. Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science. 2003;300:775–8.

    Article  CAS  Google Scholar 

  13. Barraze HJ, Pompeo F, O’Rear EA, Resasco DE. SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization. Nano Lett. 2002;2:797–802.

    Article  Google Scholar 

  14. Li J, Fang Z, Tong L, Gu A, Liu F. Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide 6. Eur Polym J. 2006;42:3230–5.

    Article  CAS  Google Scholar 

  15. Li J, Fang Z, Zhu Y, Tong L, Gu A, Liu F. Isothermal crystallization kinetics and melting behavior of multiwalled carbon nanotubes/polyamide-6 composites. J Appl Polym Sci. 2007;105:3531–42.

    Article  CAS  Google Scholar 

  16. Chen EC, Wu TM. Isothermal and nonisothermal crystallization kinetics of nylon 6/functionalized multiwalled carbon nanotube composites. J Polym Sci Part B. 2008;46:158–69.

    Article  Google Scholar 

  17. Ke K, Wen R, Wang Y, Yang W, **e BH, Yang MB. Crystallization behavior of poly(vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. J Mater Sci. 2011;46:1542–50.

    Article  CAS  Google Scholar 

  18. Pilawka R, Paszkiewicz S, Roslaniec Z. Thermal degradation kinetics of PET/SWCNTs nanocomposites prepared by the in situ polymerization. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3239-4.

  19. Vassiliou AA, Chrissafis K, Bikiaris DN. Thermal degradation kinetics of in situ prepared PET nanocomposites with acid-treated multi-walled carbon nanotubes. J Therm Anal Calorim. 2010;100(3):1063–71.

    Article  CAS  Google Scholar 

  20. Li L, Li CY, Ni C, Rong L, Hsiao B. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer. 2007;48:3452–60.

    Article  CAS  Google Scholar 

  21. Zeng X, Yu S, Sun R. Effect of functionalized multiwall carbon nanotubes on the curing kinetics and reaction mechanism of bismaleimide-triazine. J Therm Anal Calorim. 2013;114(1):387–95.

    Article  CAS  Google Scholar 

  22. Wu D, Sun Y, Zhang M. Kinetics study on melt compounding of carbon nanotube/polypropylene nanocomposites. J Polym Sci Part B. 2009;47:608–18.

    Article  CAS  Google Scholar 

  23. Lee KJ, Lee J, Hong JY, Jang J. Influence of amorphous polymer nanoparticles on the crystallization behavior of poly(vinyl alcohol) nanocomposites. Macromol Res. 2009;17:476–82.

    Article  CAS  Google Scholar 

  24. Basuli U, Chaki TK, Setua DK, Chattopadhyay S. A comprehensive assessment on degradation of multi-walled carbon nanotube-reinforced EMA nanocomposites. J Therm Anal Calorim. 2012;108(3):1223–34.

    Article  CAS  Google Scholar 

  25. Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH, et al. Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv Mater. 2004;16:58–61.

    Article  CAS  Google Scholar 

  26. Chae HG, Sreekumar TV, Uchida T, Kumar S. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer. 2005;46:10925–35.

    Article  CAS  Google Scholar 

  27. Min BG, Sreekumar TV, Uchida T, Kumar S. Oxidative stabilization of PAN/SWNT composite fiber. Carbon. 2005;43:599–604.

    Article  CAS  Google Scholar 

  28. Hu N, Zhou H, Dang G, Rao X, Chen C, Zhang W. Efficient dispersion of multi-walled carbon nanotubes by in situ polymerization. Polym Int. 2007;56:655–9.

    Article  CAS  Google Scholar 

  29. Zhang H, Xu L, Yang F, Geng L. The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication. Carbon. 2010;48:688–95.

    Article  CAS  Google Scholar 

  30. Bashir Z. Thermoreversible gelation and plasticization of polyacrylonitrile. Polymer. 1992;33:4304–13.

    Article  CAS  Google Scholar 

  31. Bell JP, Dumbleton JH. Changes in the structure of wet-spun acrylic fibers during processing. Text Res J. 1971;41:196–203.

    Article  CAS  Google Scholar 

  32. Meng H, Sui GX, Fang PF, Yang R. Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer. 2008;49:610–20.

    Article  CAS  Google Scholar 

  33. Chen C, Liang B, Lu D, Ogino A, Wang X, Nagatsu M. Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon. 2010;48:939–48.

    Article  CAS  Google Scholar 

  34. Chatterjee T, Lorenzo AT, Krishnamoorti R. Poly(ethylene oxide) crystallization in single walled carbon nanotube based nanocomposites: kinetics and structural consequences. Polymer. 2011;52:4938–46.

    Article  CAS  Google Scholar 

  35. Wu TM, Lin YW, Liao CS. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon. 2005;43:734–40.

    Article  CAS  Google Scholar 

  36. Kuo MC, Huang JC, Chen M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone). Mater Chem Phys. 2006;99:258–68.

    Article  CAS  Google Scholar 

  37. Zhang Q, Li J, Zhao X, Chen D. Preparation and characterization of alkylated carbon nanotube/polyimide nanocomposites. Polym Int. 2009;58(5):557–63.

    Article  CAS  Google Scholar 

  38. Zhou T, Wang X, Wang T. Cure reaction of multi-walled carbon nanotubes/diglycidyl ether of bisphenol A/2-ethyl-4-methylimidazole (MWCNTs/DGEBA/EMI-2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs. Polym Int. 2009;58:445–52.

    Article  CAS  Google Scholar 

  39. Kim SH, Ahn SH, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer. 2003;44:5625–34.

    Article  CAS  Google Scholar 

  40. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (2011CB605602) and the Foundation of He’nan Educational Committee (13A430716).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, L., Zhang, H. & Xu, L. The non-isothermal cyclization kinetics of amino-functionalized carbon nanotubes/polyacrylonitrile composites by in situ polymerization. J Therm Anal Calorim 119, 1081–1089 (2015). https://doi.org/10.1007/s10973-014-4241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4241-1

Keywords

Navigation