Log in

Determination of salutary parameters to facilitate bio-energy production from three uncommon biomasses using thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Fuels derived from biomass are renewable as well as environment friendly. In this study, three biomasses viz. husk of areca nut (Areca catheu), trunks of moj (Albizzia lucida), and bon bogori (Ziziphus rugosus) available in North-East region of India were tested as potential biofuel sources. The accentuation of this study was to determine the kinetic parameters using thermogravimetric (TG) technique under air and nitrogen atmosphere. The experiments were carried out within temperature range 300–973 K under air and nitrogen atmosphere at four different heating rates viz. 5, 10, 15, and 20 K min−1, respectively. The mass losses at different lumps in the TG graphs were estimated. The first-order kinetic parameters such as activation energy and pre-exponential factor were calculated for different reaction zones for all the three biomass samples. Effects of atmosphere on combustion characteristics (e.g., peak temperature, ignition temperature, and reactivity index) of biomasses were also determined in this study. Areca nut husk has highest ignition temperature (526.38 K) and reactivity index (0.21) but moj has highest peak temperature (597.91 K) along with highest activation energy (348.04 kJ mol−1) and pre-exponential factor (1.12 × 1024 min−1), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Z, Zhao KZ. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol. 2010;101:1111–4.

    Article  CAS  Google Scholar 

  2. Marquardt W, Harwardt A, Hechinger M, Viell J, Voll A. The biorenewables opportunity—toward next generation process and product systems. AIChE J. 2010;56:2228–35.

    CAS  Google Scholar 

  3. Saha BC, Iten LB, Cotta MA, Wu YV. Dilute acid pretreatment, enzymatic saccharification, and fermentation of wheat straw to ethanol. Process Biochem. 2005;40:3693–700.

    Article  CAS  Google Scholar 

  4. Cara C, Ruiz E, Oliva JM, Saez F, Castro E. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol. 2008;99:1869–76.

    Article  CAS  Google Scholar 

  5. Romero I, Moya M, Sánche zS, Ruiz E, Castro E, Bravo V. Ethanolic fermentation of phosphoric acid hydrolysates from olive tree pruning. Ind Crop Prod. 2007;25:160–8.

    Article  CAS  Google Scholar 

  6. Cheng KK, Ge JP, Zhang JA, Ling HJ, Zhou YJ, Yang MD, Xu JM. Fermentation of pretreated sugarcane bagasse hemicellulose hydrolysate to ethanol by Pachysolen tannophilus. Biotechnol Lett. 2007;29:1051–5.

    Article  CAS  Google Scholar 

  7. Ohgren K, Vehmaanper J, Siika-Aho M, Galbe M, Viikari L, Zacchi G. High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzym Microb Technol. 2007;40:607–13.

    Article  Google Scholar 

  8. Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR. Biomass gasification in a circulating fluidized bed. Biomass Bioenergy. 2004;26:171–93.

    Article  CAS  Google Scholar 

  9. Wild PJ, Uil JH, Reith JH, Kiel JHA, Heeres HJ. Biomass valorisation by staged degasification. A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass. Anal Appl Pyrolysis. 2009;85:124–33.

    Article  Google Scholar 

  10. Biagini E, Barontini F, Tognotti L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind Eng Chem Res. 2006;13:4486–93.

    Article  Google Scholar 

  11. Duruvi MS, Muhlenkamp SP, Iqbal KZ, Welker JR. The pyrolysis of natural fuels. J Fire Flammabl. 1977;6:468–77.

    Google Scholar 

  12. Ledakowicz S, Stolerak P. Kinetics of biomass thermal decomposition. Chem Pap. 2002;56(6):378–81.

    CAS  Google Scholar 

  13. Honof V, Kokta BV, Valade JL, Fassen JL. Effect of lignin content on thermal degradation of wood pulp. Thermochim Acta. 1977;19:63–8.

    Article  Google Scholar 

  14. Soonbe T, Worasuwannarak N. Kinetic analysis of biomass pyrolysis using the distributed activation energy model. Fuel. 2008;87:414–21.

    Article  Google Scholar 

  15. Otero M, Calvo LF, Gil MV, Gracia AI, Moran A. Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresour Technol. 2008;99:6311–9.

    Article  CAS  Google Scholar 

  16. Ramachandra T, Kamakshi V, Shruthi BV. Bioresource status in Karnataka. Renew Sustain Energy Rev. 2004;8:1–47.

    Article  Google Scholar 

  17. Ghaly AE, Ergudenler A. Thermal degradation of cereal-straw in air and nitrogen. J Appl Chem Biotechnol. 1991;27(4):111–26.

    Google Scholar 

  18. Vyazovkin S, Burnham AK, Criado JM, Maqueda LAP, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochem Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  19. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  20. Almeida D, Barreto DW, Calado V. Thermal analysis of less common lignocellulose fibers. J Therm Anal Calorim. 2008;91:405–8.

    Article  Google Scholar 

  21. Jimenz PE, Criado JM, Maqueda AP. Kissinger kinetic analysis of data obtained under different heating schedules. J Them Anal Calorim. 2008;94(2):427–32.

    Article  Google Scholar 

  22. Gonzalez JF, Ramiro, Gonzalez-Garcia CM, Ganan J, Encinar J, sabio E, Rubiales J. Pyrolysis of almond shells. Energy applications of fractions. Ind Eng Chem Res. 2005;44:3003–12.

    Article  CAS  Google Scholar 

  23. Rogers RN. A chemist’s perspective on the shroud of turin. In: Rogers J, Schwortz BM, editors. 2008. p. 41.

  24. Pandey KK, Pitman AJ. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad. 2003;52:151–60.

    Article  CAS  Google Scholar 

  25. Dumanli AG, Tas S, Yurum Y. Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood. J Therm Anal Calorim. 2011;103:925–33.

    Article  CAS  Google Scholar 

  26. Li Q, Zhao C, Chen X, Wu W, Li Y. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis. J Anal Appl Pyrolysis. 2009;85:521–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Council of Scientific & Industrial Research (CSIR), India for financial assistance to carry out this research work vide Grant no. 22(0521)/10/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vaibhav V. Goud or Kaustubha Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasmal, S., Goud, V.V. & Mohanty, K. Determination of salutary parameters to facilitate bio-energy production from three uncommon biomasses using thermogravimetric analysis. J Therm Anal Calorim 111, 1649–1655 (2013). https://doi.org/10.1007/s10973-011-1891-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1891-0

Keywords

Navigation