Log in

Heat capacities of a series of terminal linear alkyldiamides determined by DSC

  • Regular papers
  • Thermodynamics
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Molar heat capacities of twelve linear alkane-α,ω-diamides H2NOC-(CH2)(n-2)-CONH2, (n=2 to 12 and n=14) were measured by differential scanning calorimetry at T=183 to 323 K. Heat flow rate calibration of the Mettler DSC 30 calorimeter was carried out by using benzoic acid as reference material. The calibration was checked by determining the molar heat capacity of urea in the same temperature range as that of measurements. The molar heat capacities of alkane-α,ω-diamides increased in function of temperature and fitted into linear equations. Smoothed values of C p,m at 298.15 K displayed a linear increase with the number of carbon atoms. The C p,m contribution of CH2 group was (22.6±0.4) J K−1 mol−1, in agreement with our previous results concerning linear alkane-a,ω-diols and primary alkylamides as well as the literature data on various series of linear alkyl compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Nichols, R. Sköld, C. Spink, J. Suurkuusk and I. Wadsö, J. Chem. Thermodyn., 8 (1976) 1081.

    Article  CAS  Google Scholar 

  2. Thermodynamic Data for Biochemistry and Biotechnology, Ed. H. J. Hinz, Springer-Verlag, Berlin Heidelberg 1986, passim.

    Google Scholar 

  3. G. I. Makhatadze and P. L. Privalov, J. Mol. Biol., 232 (1993) 639.

    Article  CAS  Google Scholar 

  4. A. H. Sijpkes, G. Oudhuis, G. Somsen and T. Lilley, J. Chem. Thermodyn., 21 (1999) 343.

    Article  Google Scholar 

  5. A. W. Hakin and G. R. Hedwig, Phys. Chem. Chem. Phys., 2 (2000) 1795.

    Article  CAS  Google Scholar 

  6. P. Del Vecchio, G. Barone, R. Sabbah, G. Della Gatta and L. Abate, J. Chem. Thermodyn., 31 (1999) 1001.

    Article  Google Scholar 

  7. G. Della Gatta, M. Jóźwiak, B. Brunetti and L. Abate, J. Chem. Thermodyn., 32 (2000) 979.

    Article  CAS  Google Scholar 

  8. G. Della Gatta, T. Usacheva, E. Badea, B. Pałecz and D. Ichim, J. Chem. Thermodyn., 38 (2006) 1054.

    Article  CAS  Google Scholar 

  9. D. Ferro, G. Della Gatta and G. Barone, J. Thermal Anal., 34 (1988) 835.

    Article  CAS  Google Scholar 

  10. L. Abate, G. Della Gatta and G. Somsen, Thermochim. Acta, 239 (1994) 7.

    Article  CAS  Google Scholar 

  11. P. Ferloni and G. Della Gatta, Thermochim. Acta, 266 (1995) 203.

    Article  CAS  Google Scholar 

  12. L. Abate, M. Jóźwiak and G. Della Gatta, Thermochim. Acta, 303 (1997) 63.

    Article  CAS  Google Scholar 

  13. L. Abate, B. Pałecz, C. Giancola and G. Della Gatta, J. Chem. Thermodyn., 29 (1997) 359.

    Article  CAS  Google Scholar 

  14. G. Della Gatta, M. Jóźwiak and P. Ferloni, J. Chem. Thermodyn., 31 (1999) 537.

    Article  Google Scholar 

  15. J. S. Chickos, D. G. Hesse and J. F. Liebman, Struct. Chem., 4 (1993) 261.

    Article  CAS  Google Scholar 

  16. J. S. Chickos, D. G. Hesse and J. F. Liebman, Struct. Chem., 4 (1993) 271.

    Article  CAS  Google Scholar 

  17. C. F. Chueh and A. C. Swanson, Chem. Eng. Prog., 69 (1973) 83.

    CAS  Google Scholar 

  18. C. F. Chueh and A. C. Swanson, Can. J. Chem. Eng., 51 (1973) 596.

    Article  CAS  Google Scholar 

  19. E.S. Domalski and E. D. Hearing, J. Phys. Chem. Ref. Data, 22 (1993).

  20. E. P. Egan, Jr., Z. T. Wakefield and T. D. Farr, J. Chem. Eng. Data, 10 (1965) 138.

    Article  CAS  Google Scholar 

  21. A. Imamura, K. Takahashi, S. Murata and M. Sakiyama, J. Chem. Thermodyn., 21 (1989) 237.

    Article  CAS  Google Scholar 

  22. S. Satoh and T. Sogabe, Pap. Inst. Phys. Chem. Res. (Tokyo), 38 (1941) 246.

    Google Scholar 

  23. E. Badea, G. Della Gatta, D. D’Angelo, B. Brunetti and Z. Rečková, J. Chem. Thermodyn, 38 (2006) 1546.

    Article  CAS  Google Scholar 

  24. B. Brunetti, E. Badea, V. Piacente and G. Della Gatta, J. Chem. Eng. Data, in preparation.

  25. T. B. Coplen, Pure Appl. Chem., 73 (2001) 667.

    Article  CAS  Google Scholar 

  26. C. Plato, Anal. Chem., 44 (1972) 1531.

    Article  CAS  Google Scholar 

  27. User’s Manual TA 3000 System, Mettler Instruments AG, Griefensee, 1984.

  28. Certified Reference Materials for Thermal Analysis, Office of Reference Materials, Laboratory of the Government Chemist, Teddington, Middlesex, UK.

  29. G. Della Gatta, M. J. Richardson, S. M. Sarge and S. Stølen, Pure Appl. Chem., 78 (2006) 1455.

    Article  CAS  Google Scholar 

  30. R. A. Ruehrwein and H. M. Huffman, J. Am. Chem. Soc., 68 (1946) 2209.

    Article  Google Scholar 

  31. A. A. Kozyro, S. V. Dalidovich and A. P. Krasulin, Zh. Prik. Khim. (Leningrad), 59 (1986) 1456.

    CAS  Google Scholar 

  32. K. Sasaki and T. Yokotake, Tokyo Kogyo Shikenshi Hokohu, 61 (1966) 309.

    CAS  Google Scholar 

  33. L. Abate, E. Badea, I. Blanco and G. Della Gatta, J. Chem. Eng. Data, submitted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Abate.

Additional information

On leave from the Faculty of Chemistry, University of Craiova, Calea Bucureşti 165, Craiova 1100, Romania

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abate, L., Badea, E., Blanco, I. et al. Heat capacities of a series of terminal linear alkyldiamides determined by DSC. J Therm Anal Calorim 90, 575–580 (2007). https://doi.org/10.1007/s10973-006-7912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7912-8

Keywords

Navigation