Log in

Silicothermic reduction process in magnesium production

Thermal analysis and characterization of the slag

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper there are presented the results of the characterization and thermal analysis of the slag from the magnesium plant ‘Bela Stena’, Serbia.

The results of X-ray fluorescence analysis, scanning electron microscopy (SEM), optical microscopy (LOM) and X-ray diffraction (XRD) were used for chemical and mineralogical analysis of the solidified slag samples. Differential thermal analysis (DTA), thermo-gravimetric (TG) analysis and thermal microscopy results were used for determination of characteristic phase transformations. The solidified slag shows dicalcium silicate based structure. Magnesium is mostly present in the form of the following minerals: periclase, merwinite and melilite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Fioric and A. Brusa, 5th CIMTEC, Procceding, Lignano Sabidoro, Italy 1982, p. 161.

  2. M. C. Wang and J. H. Liav, Glass Technol., 30 (1989) 29.

    CAS  Google Scholar 

  3. A. Agarwal, UNITECR’ 05, (2006) 366.

  4. J. Zelic, Cem. Conc. Res., 35 (2005) 2340.

    Article  CAS  Google Scholar 

  5. S. N. Monteiro, E. L. Jr. Dos Santos, S. C. Interne, D. P. Dias and C. M. F. Vieira, TMS Annual Meeting, (2006) 303.

  6. M. Suzuki and T. Tanaka, ISIJ Int., 46 (2006) 1391.

    Article  CAS  Google Scholar 

  7. B. Balac, First Yugoslav Symposium on secondary raw materials, Proceedings, Beograd 1988 p. 59.

  8. H. Hayakawa, M. Hasegawa, K. Oh-nuki, T. Sawai and M. Iwase, Steel Res. Int., 77 (2006) 14.

    CAS  Google Scholar 

  9. N. E. Dunaev and A. G. Mihalevic, Metallurgija, (1975) 182.

  10. L. Zuba, Z. Pavlik, P. Rovnanikova, P. Bayer and R. Cerny, Int. J. Therm., 27 (2006) 1250.

    Article  Google Scholar 

  11. G. A. Renkin and F. E. Wright, Am. J. Sci., 4 (1915) 5.

    Google Scholar 

  12. W. Oelsen and F. Korber, Staht Eisen, 60 (1932) 921.

    Google Scholar 

  13. R. S. McCaffery, J. E. Desterle and L. Shapiro, Trans. AIME, 19 (1926) 534.

    Google Scholar 

  14. F. Sichen and S. Seetharaman, Metall. Mater. Trans. B, 28 (1997) 827.

    Article  Google Scholar 

  15. S. Grzeszczuk and J. Szuba, J. Therm. Anal. Cal., 33 (1988) 425.

    Article  Google Scholar 

  16. L. Stoch, I. Waclawska and M. Srode, J. Therm. Anal. Cal., 77 (2004) 57.

    Article  CAS  Google Scholar 

  17. In-Ho Jung, S. A. Decterov and A. D. Pelton, J. Ceram. Soc., 25 (2005) 313.

    Article  CAS  Google Scholar 

  18. W. Huang, M. Hillert and X. Wang, Metall. Mater. Trans. A, 26 (1995) 2293.

    Article  Google Scholar 

  19. P. Shi, S. K. Sahena, Z. Zang and B. Sundman, Calphad, 18 (1994) 47.

    Article  CAS  Google Scholar 

  20. K. Adamkovicova, I. Nerad, L. Kosa, M. Liska, J. Strecko and I. Proks, Chem. Geol., 128 (1996) 107.

    Article  CAS  Google Scholar 

  21. R. E. Auna, M. Hayashi and S. Sridhar, Ironmaking and Steelmaking, 32 (2005) 141.

    Article  Google Scholar 

  22. H. M. Henao and K. Itagaki, Metall. Mater. Trans. B, 35 (2004) 1041.

    Article  Google Scholar 

  23. Y.-J. Lee and S.-H. Yi, Fuel Energy Abst., 38 (1997) 431.

    Google Scholar 

  24. A. Kandratiev and E. Jak, Metall. Mater. Trans. B, 36 (2005) 623.

    Article  Google Scholar 

  25. G. Eriksson and A. D. Pelton, Metall. Trans., 24B (1993) 795.

    CAS  Google Scholar 

  26. C. Herzberg and J. Zhang, Am. Mineral., 83 (1998) 491.

    CAS  Google Scholar 

  27. A. Davies, B. Wood, T. Barry, A. Dinsdale and J. Gisby, Mineral. Mag., 58A (1994) 213.

    Article  Google Scholar 

  28. S. Sridhar and A. W. Cramb, Metall. Mater. Trans. B, 31 (2000) 406.

    Article  Google Scholar 

  29. S. Jansson, B. Sune and P. Jonsson, Scand. J. Metall., 34 (2005) 283.

    Article  CAS  Google Scholar 

  30. F. Dahi, J. Brandberg and D. Sichen, ISIJ Int., 46 (2006) 614.

    Article  Google Scholar 

  31. O. Hiroki and S. Hideaki, Metall. Mater. Trans. B, 29 (1998) 6.

    Google Scholar 

  32. M. V. Kök and W. Smykatz-Kloss, J. Therm. Anal. Cal., 64 (2001) 1271.

    Article  Google Scholar 

  33. M. O.-Humienik and J. Mozejko, J. Therm. Anal. Cal., 56 (1999) 829.

    Article  Google Scholar 

  34. I. M. Morsi, K. A. Barawy, M. B. Morsi and S. R. Abdel-Gawad, Can. Metall. Q., 41 (2002) 15.

    CAS  Google Scholar 

  35. I. M. Morsi, K. A. Barawy, M. B. Morsi and S. R. Abdel-Gawad, Trans. Indian Inst. Metals, 54 (2001) 199.

    CAS  Google Scholar 

  36. http://www.webmineral.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Minić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minić, D., Manasijević, D., Ðokić, J. et al. Silicothermic reduction process in magnesium production. J Therm Anal Calorim 93, 411–415 (2008). https://doi.org/10.1007/s10973-006-6563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-6563-0

Keywords

Navigation