Log in

Synthesis of hollow micro-mesoporous nitrogen-doped carbon nanoparticles for enhanced CO2 capture

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The design and synthesis of porous carbons with unique structures and diverse functionalities as CO2 adsorbents constitute a challenging and intriguing research topic. In this study, the synthesis of hollow micro-mesoporous nitrogen-doped carbon nanoparticles (NPCS) and its adsorption of CO2 were investigated. Highly porous nitrogen-doped carbon nanoparticles were successfully synthesized by using economically available resorcinol and formaldehyde as carbon precursors, with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (KH-792) as a soft template and silica sol as a hard template. The hollow nitrogen-doped carbon nanoparticles exhibit an evident microporous-mesoporous structure and have two different scales of mesopores with 9 nm and 12 nm, respectively. The effects of various synthetic parameters on the formation of hollow nitrogen-doped carbon nanoparticles were analyzed. The hollow nitrogen-doped carbon nanoparticles exhibited specific surface area of 1090 to 1716 m2/g and nitrogen content of 2.83 to 5.28%. At 273 K and 1 bar, the experimental results demonstrated the positive effects of the enriched pore structure and nitrogen do** on CO2 adsorption. The optimum adsorption capacity of activated NPCS (ANPCS) was 5.11 mmol/g with excellent CO2/N2 selectivity value of 20.44 at 273 K and 1 bar. The initial heat of adsorption value for ANPCS was 30.90 KJ/mol. Additionally, the hollow nitrogen-doped carbon nanoparticles retained 99.2% of the initial adsorbed amount after 5 cycles of adsorption. The excellent adsorption performance of the material can be ascribed not only to its extensive specific surface area and enriched nitrogen but also to its mesoporous and hollow structure, which facilitates rapid CO2 transport.

Graphical Abstract

Highlights

  • The combination of soft and hard templates was used to prepare hollow micro-mesoporous nitrogen-doped carbon nanoparticles.

  • N-(2-aminoethyl)-3-aminopropyltrimethoxysilane is used not only as structure-directing and pore-forming agent, but also nitrogen source.

  • The carbon nanoparticles have excellent CO2 adsorption due to their large specific surface area, high nitrogen content and mesoporous hollow structures.

  • The mesoporous and hollow structures leads to high CO2 transport rates in carbon nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pourebrahimi S, Pirooz M, Ahmadi S, Kazemeini M, Vafajoo L (2023) Nanoengineering of metal-based electrocatalysts for carbon dioxide (CO2) reduction: A critical review, Mater Today Phys, 38. https://doi.org/10.1016/j.mtphys.2023.101250

  2. Feng M, Cheng M, Ji X, Zhou L, Dang Y, Bi K, Dai Z (2022) Finding the optimal CO2 adsorption material: Prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM. Sep Purif Technol 302:122111. https://doi.org/10.1016/j.seppur.2022.122111

    Article  CAS  Google Scholar 

  3. Abdelhamid HN, Sultan S, Mathew AP (2023) Three-dimensional printing of cellulose/covalent organic frameworks (CelloCOFs) for CO adsorption and water treatment. Acs Appl Mater Inter 15:59795–59805. https://doi.org/10.1016/j.jcou.2021.101476

    Article  CAS  Google Scholar 

  4. Sarwar A, Ali M, Khoja AH, Nawar A, Waqas A, Liaquat R, Naqvi SR, Asjid M (2021) Synthesis and characterization of biomass-derived surface-modified activated carbon for enhanced CO2 adsorption, J CO2 Util, 46. https://doi.org/10.1021/acsami.3c13966

  5. Younas M, Sohail M, Leong LK, Bashir MJK, Sumathi S (2016) Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol 13:2533–2533. https://doi.org/10.1007/s13762-016-1008-1

    Article  CAS  Google Scholar 

  6. Pereira D, Fonseca R, Marin-Montesinos I, Sardo M, Mafra L (2023) Understanding CO2 adsorption mechanisms in porous adsorbents: A solid-state NMR survey, Curr Opinion Colloid In, 64. https://doi.org/10.1016/j.cocis.2023.101690

  7. Wang L, Wang T, Hao R, Wang Y (2023) Synthesis and applications of biomass-derived porous in energy utilization and environmental remediation. CHEMOSPHERE 339:139635. https://doi.org/10.1016/j.chemosphere.2023.139635

    Article  CAS  PubMed  Google Scholar 

  8. Temesgen T, Bekele ET, Gonfa BA, Tufa LT, Sabir FK, Tadesse S, Dessie Y (2023) Advancements in biomass derived porous carbon materials and their surface influence effect on electrode electrochemical performance for sustainable supercapacitors: A review. J Energy Storage 73:109293. https://doi.org/10.1016/j.est.2023.109293

    Article  Google Scholar 

  9. Tong L, Wang T, Chen Y, Lin G, He L, Liu X (2023) Nitrogen self-doped porous lamellar carbon with superior electrochemical performance. Diam Related Mater 134:109787. https://doi.org/10.1016/j.diamond.2023.109787

    Article  CAS  Google Scholar 

  10. Zha Q, Hu X, Guo Y, Wu M, Li Z, Zhang Y (2008) Improved antioxidative ability of porous carbons by boron-do**. New Carbon Mater 23:356–360. https://doi.org/10.1016/S1872-5805(09)60007-X

    Article  CAS  Google Scholar 

  11. Yi J, Qing Y, Wu C, Zeng Y, Wu Y, Lu X, Tong Y (2021) Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J Power Sources 481:228879. https://doi.org/10.1016/j.jpowsour.2017.03.036

    Article  CAS  Google Scholar 

  12. Zhang C, Lu C, Bi S, Hou Y, Zhang F, Cai M, He Y, Paasch S, Feng X, Brunner E, Zhuang X (2018) S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion. Front Chem Sci Eng 12:346–357. https://doi.org/10.1007/s11705-018-1727-6

    Article  CAS  Google Scholar 

  13. Wang L, **e L, Feng X, Li X, Ma H, Han G, Yang D, Zhou J (2022) Optimization process of porous carbon derived from coconut shell: A novel preparation condition and investigation on pore surface roughness. Diam Related Mater 123:108854. https://doi.org/10.1016/j.diamond.2022.108854

    Article  CAS  Google Scholar 

  14. Islam MN, Shrivastava U, Atwa M, Li X, Birss V, Karan K (2020) Highly ordered nano-porous carbon scaffold with controllable wettability as the microporous layer for fuel cells. Acs Appl Mater Inter 12:39215–39226. https://doi.org/10.1021/acsami.0c10755

    Article  CAS  Google Scholar 

  15. Yao F, Ye G, Peng W, Zhao G, Wang X, Wang Y, Zhu W, Jiao Y, Huang H, Ye D (2023) Preparation of activated biochar with adjustable pore structure by hydrothermal carbonization for efficient adsorption of VOCs and its practical application prospects. J Environ Chem Eng 11:109611. https://doi.org/10.1016/j.jece.2023.109611

    Article  CAS  Google Scholar 

  16. Fan LZ, Qiao S, Song W, Wu M, He X, Qu X (2013) Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochim Acta 105:299–304. https://doi.org/10.1016/j.electacta.2013.04.137

    Article  CAS  Google Scholar 

  17. Choi M, Jang J (2008) Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. J Colloid Interf Sci 325:287–289. https://doi.org/10.1016/j.jcis.2008.05.047

    Article  CAS  Google Scholar 

  18. Shokoohi S, Arefazar A, Khosrokhavar R (2008) Silane coupling agents in polymer-based reinforced composites: A review. J Reinf Plast Comp 27:473–485. https://doi.org/10.1177/0731684407081391

    Article  CAS  Google Scholar 

  19. Zhang M, Xu H, Zeze ALP, Zhang J (2023) Metakaolin-based geopolymer composites modified by epoxy resin and silane: Mechanical properties and organic-inorganic interaction mechanism. Appl Clay Sci 232:106767. https://doi.org/10.1016/j.clay.2022.106767

    Article  CAS  Google Scholar 

  20. Wang Q, Lv Y, Zhu T (2021) Silane coupling agent assisting dopamine-functionalized biomass porous carbons for enhanced adsorption of organic acids: effects of acid-alkali activation on microstructure. Carbon Lett 31:29–37. https://doi.org/10.1007/s42823-020-00146-w

    Article  CAS  Google Scholar 

  21. Wang S, Qiu X, Chen Y, Chen S (2022) Preparation and structure tuning of CO2 adsorbent based on in-situ amine-functionalized hierarchical porous polymer. Micropor Mesopor Mat 330:111585. https://doi.org/10.1016/j.micromeso.2021.111585

    Article  CAS  Google Scholar 

  22. Wu D, Liu Y, Wu Y, Tan B, **e Z (2018) Microporous carbons derived from organosilica-containing carbon dots with outstanding supercapacitance. Dalton T 47:5961–5967. https://doi.org/10.1039/C8DT00484F

    Article  CAS  Google Scholar 

  23. Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B, Zhao D (2010) Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size. Angew Chem Int Edit 49:7987–7991. https://doi.org/10.1002/anie.201002849

    Article  CAS  Google Scholar 

  24. Zhong H, Hu H, Ni B, Guo Y, Luo Z, Zhao T, Zhang B (2022) Silica sol nanoparticles hybridized allyl phenolic resins for improving mechanical and thermal performance. Polymer 254:125052. https://doi.org/10.1016/j.polymer.2022.125052

    Article  CAS  Google Scholar 

  25. Zhang Y, Liu Y, Liu M, Li C (2021) Preparation and performance study of modified silica sol/phenolic resin. BIORESOURCES 16:6669–6683. https://doi.org/10.15376/biores.16.4.6669-6683

    Article  CAS  Google Scholar 

  26. Blum FD, Meesiri W, Kang HJ, Gambogi JE (1991) Hydrolysis, adsorption, and dynamics of silane coupling agents on silica surfaces. J Adhes Sci Technol 5:479–496. https://doi.org/10.1163/156856191X00611

    Article  CAS  Google Scholar 

  27. Li TH, Cao M, Liang JK, **e XG, Du GB (2017) Mechanism of base-catalyzed resorcinol-formaldehyde and phenol-resorcinol-formaldehyde condensation reactions: A theoretical study, Polymers-Basel, 9. https://doi.org/10.3390/polym9090426

  28. Brochier Salon MC, Bayle PA, Abdelmouleh M, Boufi S, Belgacem MN (2008) Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. COLLOID SURFACE A 312:83–91. https://doi.org/10.1016/j.colsurfa.2007.06.028

    Article  CAS  Google Scholar 

  29. Luo Y, Yang Z, Guo W, Chen H, Wang T, Liu Y, Lyu Y, Luo H, Dai S (2020) De novo fabrication of multi-heteroatom-doped carbonaceous materials via an in situ do** strategy. J Mater Chem A 8:4740–4746. https://doi.org/10.1039/C9TA13586C

    Article  CAS  Google Scholar 

  30. Rehman A, Nazir G, Yop Rhee K, Park SJ (2021) A rational design of cellulose-based heteroatom-doped porous carbons: Promising contenders for CO2 adsorption and separation. Chem Eng J 420:130421. https://doi.org/10.1016/j.cej.2021.130421

    Article  CAS  Google Scholar 

  31. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183. https://doi.org/10.1021/CM0101069

    Article  CAS  Google Scholar 

  32. Fürstner A, Seidel G (1995) High-surface sodium as a reducing agent for Ticl3. Synthesis-Stuttgart 1995:63–68. https://doi.org/10.1002/CHIN.199534057

    Article  Google Scholar 

  33. Zhou Y, Wang H, Wang D, Yang X, **ng H, Feng J, Zong Y, Zhu X, Li X, Zheng X (2023) Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity. Int J Min Met Mater 30:474–484. https://doi.org/10.1007/s12613-022-2499-z

    Article  CAS  Google Scholar 

  34. Arrigo R, Hävecker M, Wrabetz S, Blume R, Lerch M, McGregor J, Parrott EPJ, Zeitler JA, Gladden LF, Knop-Gericke A, Schlögl R, Su DS (2010) Tuning the Acid/Base Properties of Nanocarbons by Functionalization via Amination. J Am Chem Soc 132:9616–9630. https://doi.org/10.1021/ja910169v

    Article  CAS  PubMed  Google Scholar 

  35. Sakai N, Aoki Y, Sasada T, Konakahara T (2005) New approach to the practical synthesis of tri- or tetrasubstituted pyrimidine derivatives: A four-component coupling reaction from a functionalized silane, two types of aromatic nitriles, and acetals. Org Lett 7:4705–4708. https://doi.org/10.1021/ol051901l

    Article  CAS  PubMed  Google Scholar 

  36. Plaza MG, Thurecht KJ, Pevida C, Rubiera F, Pis JJ, Snape CE, Drage TC (2013) Influence of oxidation upon the CO capture performance of a phenolic-resin-derived carbon. Fuel Process Technol 110:53–60. https://doi.org/10.1016/j.fuproc.2013.01.011

    Article  CAS  Google Scholar 

  37. Ello AS, de Souza LKC, Trokourey A, Jaroniec M (2013) Coconut shell-based microporous carbons for CO2 capture. Micropor Mesopor Mat 180:280–283. https://doi.org/10.1016/j.micromeso.2013.07.008

    Article  CAS  Google Scholar 

  38. Metiu H, Chrétien S, Hu Z, Li B, Sun X (2012) Chemistry of Lewis acid–base pairs on oxide surfaces. J Phys Chem C 116:10439–10450. https://doi.org/10.1021/jp301341t

    Article  CAS  Google Scholar 

  39. Wang Y, Hu X, Hao J, Ma R, Guo Q, Gao H, Bai H (2019) Nitrogen and oxygen codoped porous carbon with superior CO2 adsorption performance: A combined experimental and DFT calculation study. Ind Eng Chem Res 58:13390–13400. https://doi.org/10.1021/ACS.IECR.9B01454

    Article  CAS  Google Scholar 

  40. Shi J, Xu J, Cui H, Yan N, Zou J, Liu Y, You S (2023) Synthesis of highly porous N-doped hollow nitrogen-doped carbon nanoparticles with a combined soft template-chemical activation method for CO2 capture. Energy 280:128172. https://doi.org/10.1016/j.energy.2023.128172

    Article  CAS  Google Scholar 

  41. Voogd P, Scholten JJF, Vanbekkum H (1991) Use of the Tert-Plot-De Boer method in pore volume determinations of Zsm-5 Type. Zeolites, Colloid Surface 55:163–171. https://doi.org/10.1016/0166-6622(91)80090-B

    Article  CAS  Google Scholar 

  42. Pourebrahimi S, Pirooz M (2022) Synthesis of a novel freestanding conjugated triazine-based microporous membrane through superacid-catalyzed polymerization for superior CO2 separation. Chem Eng J Adv 11:100315. https://doi.org/10.1016/j.ceja.2022.100315

    Article  CAS  Google Scholar 

  43. Pourebrahimi S, Pirooz M, Kazemeini M, Vafajoo L (2024) Synthesis, characterization, and gas (SO2, CO2, NO2, CH4, CO, NO, and N2) adsorption properties of the CTF-1 covalent triazine framework-based porous polymer: experimental and DFT studies. J Porous Mat 31:643–657. https://doi.org/10.1007/s10934-023-01538-9

    Article  CAS  Google Scholar 

  44. Zhang Z, Zhang L, Gao Q, Sun N, Wei W (2023) Robust nitrogen-doped microporous hollow carbon spheres for energy-efficient CO2 capture from flue gas J CO2 Util 75:102570. 10.1016/j.jcou.2023.102570

  45. Yu Q, Bai J, Huang J, Demir M, Altay BN, Hu X, Wang L (2022) One-pot synthesis of N-rich porous carbon for efficient CO2 adsorption performance. Molecules 27:6816. https://doi.org/10.3390/molecules27206816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi J, Cui H, Xu J, Yan N, Zhang C, You S (2021) Fabrication of nitrogen doped and hierarchically porous carbon flowers for CO2 adsorption. J CO2 Util 51:101617. https://doi.org/10.1016/j.jcou.2021.101617

    Article  CAS  Google Scholar 

  47. Cui H, Xu J, Shi J, Yan N, Liu Y, Zhang S (2020) Zinc nitrate as an activation agent for the synthesis of nitrogen-doped porous carbon and its application in CO2 adsorption. Energ Fuel 34:6069–6076. https://doi.org/10.1021/acs.energyfuels.0c00305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Key R&D Program of China (2021YFB3501102).

Author information

Authors and Affiliations

Authors

Contributions

**u Liu: Writing-original draft, Investigation, Formal analysis, Data curation. **g-Chao **e: Writing-review & editing, Conceptualization. Qun-Yan Li: Writing-original draft, Supervision, Investigation, Funding acquisition, Formal analysis, Conceptualization. Li Liu: Writing-review & editing, Conceptualization, Data curation. Qi Wei: Writing-review & editing, Data curation. Su-** Cui: Writing-review & editing, Writing-original draft, Conceptualization. Zuo-Ren Nie:Writing-review & editing, Writing-original draft, Conceptualization.

Corresponding author

Correspondence to Qun-Yan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., **e, JC., Li, QY. et al. Synthesis of hollow micro-mesoporous nitrogen-doped carbon nanoparticles for enhanced CO2 capture. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06432-7

Keywords

Navigation