Log in

Effect of processing temperature on structural and electrical properties of lead-free K0.5Bi0.5TiO3 piezoelectric ceramics synthesized by sol-gel technique

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, potassium bismuth titanate (KBT) ceramics were prepared by sol-gel technique. The structural and electrical properties were investigated at different calcination and sintering temperatures. The single phase tetragonal structure was confirmed by X-ray diffraction pattern using Rietveld refinement. Raman analysis revealed changes in scattering mode of KBT ceramics with rise in processing temperature. Dielectric characterizations have been performed as a function of temperature. The ferroelectric nature of KBT ceramics is studied by automatic P-E loop tracer which reveals saturation polarization leading to a superior ferroelectric behavior. The values of d33 charge coefficients observed at different sintering temperatures were 224, 245 and 276 pC/N.

Graphical Abstract

This graphical abstract represents value of piezoelectric charge coefficient value (d33) increases with increase in sintering temperature. Raman spectroscopy analysis discloses its tetragonal phase structure without any secondary phases. The piezoelectric charge coefficient (d33) values of KBT ceramics are 224, 245 and 276 pC/N at different sintering temperature 950 °C, 1000 °C and 1050 °C, respectively.

Highlights

  • X-ray diffraction study revealed pure phases of tetragonal structure of KBT ceramics.

  • Raman analysis revealed changes in the scattering mode of KBT ceramics at different sintering temperatures.

  • P-E loop reveals saturation in its traces leading to good ferroelectric behavior of KBT ceramics.

  • High value of d33 coefficients i.e., 224, 245 and 276 pC/N were observed at different sintering temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Panda PK (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44:5049–5062. https://doi.org/10.1007/S10853-009-3643-0

    Article  ADS  CAS  Google Scholar 

  2. Munir M, Habib M, Khan SA et al. (2019) Effect of the processing temperature on the electrical properties of lead-free 0.965 Bi0.5Na0.5TiO 3 – 0.035 BaTiO3 piezoelectric ceramics synthesized by sol–gel method. J Sol-Gel Sci Technol 643–652. https://doi.org/10.1007/s10971-018-04913-0

  3. Kumar S, Shandilya M, Thakur S, Thakur N (2018) Structural, optical and photoluminescence properties of K0.5Na0.5NbO3 ceramics synthesized by sol–gel reaction method. J Sol Gel Sci Technol 88:646–653. https://doi.org/10.1007/s10971-018-4791-y

    Article  CAS  Google Scholar 

  4. Shinekumar K, Dutta S (2015) High-temperature piezoelectrics with large piezoelectric coefficients. J Electron Mater 44:613–622. https://doi.org/10.1007/s11664-014-3534-2

    Article  ADS  CAS  Google Scholar 

  5. Otoničar M, Škapin SD, Spreitzer M, Suvorov D (2010) Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system. J Eur Ceram Soc 30:971–979. https://doi.org/10.1016/j.jeurceramsoc.2009.10.006

    Article  CAS  Google Scholar 

  6. Li W, Xu Z, Chu R et al. (2011) High piezoelectric d33 coefficient of lead-free (Ba 0.93Ca0.07)(Ti0.95Zr0.05)O3 ceramics sintered at optimal temperature. Mater Sci Eng B Solid State Mater Adv Technol 176:65–67. https://doi.org/10.1016/j.mseb.2010.09.003

    Article  CAS  Google Scholar 

  7. Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700. https://doi.org/10.1016/j.jeurceramsoc.2005.03.125

    Article  CAS  Google Scholar 

  8. Bao H, Zhou C, Xue D et al. (2010) A modified lead-free piezoelectric BZT-xBCT system with higher Tc. J Phys D Appl Phys 43: https://doi.org/10.1088/0022-3727/43/46/465401

  9. Khesro A, Wang D, Hussain F et al. (2020) Temperature dependent piezoelectric properties of lead-free (1-x)K0.6Na0.4NbO3–xBiFeO3 ceramics. Front Mater 7:1–9. https://doi.org/10.3389/fmats.2020.00140

    Article  ADS  Google Scholar 

  10. Guo Q, Li F, **a F et al. (2021) Piezoelectric ceramics with high piezoelectricity and broad temperature usage range. J Mater 7:683–692. https://doi.org/10.1016/j.jmat.2020.11.012

    Article  ADS  Google Scholar 

  11. Lopez-Juarez R, Gonzalez F, Villafuerte-Castrejo M-E (2011) Lead-free ferroelectric ceramics with perovskite structure. Ferroelectr Mater Asp. https://doi.org/10.5772/20107

  12. Badole M, Dwivedi S, Pareek T et al. (2020) Significantly improved dielectric and piezoelectric properties of BiAlO3 modified potassium bismuth titanate lead-free ceramics. Mater Sci Eng B Solid-State Mater Adv Technol 262:114749. https://doi.org/10.1016/j.mseb.2020.114749

    Article  CAS  Google Scholar 

  13. Li L, Li M, Sinclair DC (2018) The influence of excess K2O on the electrical properties of (K,Na)1/2Bi1/2TiO3 ceramics. Appl Phys Lett 112: https://doi.org/10.1063/1.5025275

  14. Hiruma Y, Aoyagi R, Nagata H, Takenaka T (2005) Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3 ceramics. Jpn J Appl Phys 1 Regul Pap Short Notes Rev Pap 44:5040–5044. https://doi.org/10.1143/JJAP.44.5040

    Article  CAS  Google Scholar 

  15. Bengagi M, Morini F, El Maaoui M, Marchet P (2012) Structure and electrical properties in the K1/2Bi1/2TiO3-K1/2Bi1/2ZrO3 solid solution (KBT-KBZ). Phys Status Solidi Appl Mater Sci 209:2063–2072. https://doi.org/10.1002/pssa.201127327

    Article  ADS  CAS  Google Scholar 

  16. Hlruma Y, Nagata H, Takenaka T (2007) Grain-size effect on electrical properties of (Bi1/2K1/2)TiO3 ceramics. Jpn J Appl Phys 1 Regul Pap Short Notes Rev Pap 46:1081–1084. https://doi.org/10.1143/JJAP.46.1081

    Article  CAS  Google Scholar 

  17. Ramana MV, Roopas Kiran S, Reddy NR et al. (2011) Synthesis of lead free sodium bismuth titanate (NBT) ceramic by conventional and microwave sintering methods. J Adv Dielectr 1:71–77. https://doi.org/10.1142/S2010135X11000094

    Article  CAS  Google Scholar 

  18. Setter N, Cross LE (1980) The contribution of structural disorder to diffuse phase transitions in ferroelectrics. J Mater Sci 15:2478–2482. https://doi.org/10.1007/BF00550750

    Article  ADS  CAS  Google Scholar 

  19. Hagiwara M, Ehara Y, Novak N et al. (2017) Relaxor-ferroelectric crossover in (Bi1/2K1/2)TiO3: origin of the spontaneous phase transition and the effect of an applied external field. Phys Rev B 96:1–9. https://doi.org/10.1103/PhysRevB.96.014103

    Article  Google Scholar 

  20. Wada T, Fukui A, Matsuo Y (2002) Preparation of (K0.5Bi0.5)TiO3 ceramics by polymerized complex method and their properties. Jpn J Appl Phys 1 Regul Pap Short Notes Rev Pap 41:7025–7028. https://doi.org/10.1143/JJAP.41.7025

    Article  CAS  Google Scholar 

  21. Chaudhari VA, Bichile GK (2013) Synthesis, structural, and electrical properties of pure PbTiO3 ferroelectric ceramics. Smart Mater Res 2013:1–9. https://doi.org/10.1155/2013/147524

    Article  CAS  Google Scholar 

  22. Banerjee K, Asthana S (2019) Resolution of ambiguity between the depolarization and ferroelectric–relaxor transition temperature through dielectric studies in lead-free perovskite K0.5Bi0.5TiO3. Mater Chem Phys 231:344–350. https://doi.org/10.1016/j.matchemphys.2019.04.043

    Article  CAS  Google Scholar 

  23. Li ZF, Wang CL, Zhong WL et al. (2003) Dielectric relaxor properties of K0.5Bi0.5TiO3 ferroelectrics prepared by sol–gel method. J Appl Phys 94:2548. https://doi.org/10.1063/1.1592290

    Article  ADS  CAS  Google Scholar 

  24. Sui Y, Huang X, Ma Z et al. (2003) The effect of thermal annealing on crystallization in a-Si:H/SiO2 multilayers by using layer by layer plasma oxidation. J Phys Condens Matter 15:5793–5799. https://doi.org/10.1088/0953-8984/15/34/309

    Article  ADS  CAS  Google Scholar 

  25. Coondoo I, Panwar N, Alikin D et al. (2018) A comparative study of structural and electrical properties in lead-free BCZT ceramics: Influence of the synthesis method. Acta Mater 155:331–342. https://doi.org/10.1016/j.actamat.2018.05.029

    Article  ADS  CAS  Google Scholar 

  26. Bhardwaj S, Kumar S, Thakur N (2023) Effect of calcination temperature on structural and electrical properties of K0.5Bi0.5TiO3 ceramics prepared by solid-state route. Bull Mater Sci 0123456789. https://doi.org/10.1007/s12034-023-03014-1

  27. Hou Y, Hou L, Huang S et al. (2006) from sol – gel-hydrothermal and sol – gel routes. 137:658–661. https://doi.org/10.1016/j.ssc.2006.01.023

  28. Kumar S, Thakur N (2021) Effect of alkali metal (Na, K) ion ratio on structural, optical and photoluminescence properties of K0.5Na0.5NbO3 ceramics prepared by sol–gel technique. Bull Mater Sci 44: https://doi.org/10.1007/s12034-020-02341-x

  29. Guo J, Zhu M, Li L et al. (2017) Relaxor to ferroelectric crossover in KBT ceramics by prolonged annealing. J Alloy Compd 703:448–453. https://doi.org/10.1016/J.JALLCOM.2017.01.299

    Article  CAS  Google Scholar 

  30. Dwivedi S, Chamoli N, Pareek T et al. (2019) Structural, dielectric, and piezoelectric properties of lead-free (1 − x)K1/2Na1/2NbO3 − xCa(Zn1/3Ta2/3)O3 perovskite solid solution. J Mater Sci Mater Electron 30:15084–15096. https://doi.org/10.1007/s10854-019-01881-1

    Article  CAS  Google Scholar 

  31. Mudinepalli VR, Feng L, Lin WC, Murty BS (2015) Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. J Adv Ceram 4:46–53. https://doi.org/10.1007/s40145-015-0130-8

    Article  CAS  Google Scholar 

  32. Hiroshima T, Tanaka K, Kimura T (1998) Effects of microstructure and composition on the curie temperature of lead barium niobate solid solutions. J Am Ceram Soc 79:3235–3242. https://doi.org/10.1111/j.1151-2916.1996.tb08100.x28

    Article  Google Scholar 

  33. Zhen Y, Li JF (2006) Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. J Am Ceram Soc 89:3669–3675. https://doi.org/10.1111/j.1551-2916.2006.01313.x

    Article  CAS  Google Scholar 

  34. Xu F, Trolier-McKinstry S, Ren W et al. (2001) Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J Appl Phys 89:1336–1348. https://doi.org/10.1063/1.1325005

    Article  ADS  CAS  Google Scholar 

  35. Kumar S, Shandilya M, Kaur Ganit, Thakur N (2022) Effect of excessive amount of (Na, K) ion ratio on structural, optical and electrical properties of K0.5Na0.5NbO3 ceramics prepared by solid-state route. Bull Mater Sci 45:1–11. https://doi.org/10.1007/S12034-021-02606-Z/FIGURES/11

    Article  Google Scholar 

  36. German RM (2016) Sintering trajectories: description on how density, surface area, and grain size change. Jom 68:878–884. https://doi.org/10.1007/s11837-015-1795-8

    Article  Google Scholar 

  37. Badole M, Vasavan HN, Saxena S, Das AK, Srihari V, Kumar S (2023) Piezoelectric properties and structural evolution in La-and Al-modified K0.5Bi0.5TiO3 ceramics. J Alloy Compd 944:169204. https://doi.org/10.1016/j.jallcom.2023.169204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SB is thankful to JOINT CSIR-UGC NET-JRF having fellowship F.No.16-6(Dec.2017)/2018(NET/CSIR) for financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

SB: drafted the research paper including synthesis, characterization and result analysis, JRF fellow under CSIR-UGC NET-JRF having fellowship F.No.16-6(Dec.2017)/2018(NET/CSIR) to get financial aid to the research; SK: drafted, reviewed and proofread the version of research article, handling all the correspondence about the article; NT: supervisor of the research work, financial acquisition is also drawn under the authority of the author.

Corresponding author

Correspondence to Shammi Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, S., Kumar, S. & Thakur, N. Effect of processing temperature on structural and electrical properties of lead-free K0.5Bi0.5TiO3 piezoelectric ceramics synthesized by sol-gel technique. J Sol-Gel Sci Technol 109, 734–747 (2024). https://doi.org/10.1007/s10971-024-06311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-024-06311-1

Keywords

Navigation