Log in

A band gap engineering for the modification in electrical properties of Fe3O4 by Cu2+ do** for electronic and optoelectronic devices applications

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles (α-Fe3O4) were successfully prepared by a chemical co-precipitation technique. Modification in electrical properties of α-Fe3O4 by Cu2+ dopant for the modification in electrical properties was deliberated. As the Cu2+ dopant content increased from 5 to 10%, the average crystallite size decreased from 2.96 to 2.93 nm. The synthesized sample doped with 5% exhibited the porous nature and least agglomeration. The optical studies revealed that energy band gap increased from 1.76–1.83 eV by enhancing Cu2+ content from 5 to 10%. The electrical studies revealed that the electrical conductivity decreased from 4.04 × 10−5 to 9.17 × 10−6 ℧ cm−1. The obtained consequences revealed that desired properties of Cu+2 doped Fe3O4 NPs can be obtained by controlling the substituting content in host material. The Fe3O4 NPs with Cu2+ do** exhibited higher electrical conductivity and become an excellent candidate for development of electronic and optoelectronic devices, such as, photodetector, sensors and energy storage devices.

Graphical Abstract

Highlights

  • Modification in electrical properties of α-Fe3O4 by Cu2+ dopant for the modification in electrical properties was deliberated.

  • As the Cu2+ dopant content increased from 5 to 10%, the average crystallite size decreased from 2.96 nm to 2.93 nm.

  • The synthesized sample doped with 5% exhibited the porous nature and least agglomeration.

  • The optical studies revealed that energy band gap increased from 1.76 to 1.83 eV by enhancing Cu2+ content from 5 to 10%. The electrical studies revealed that the electrical conductivity decreased from 4.04 × 10−5 to 9.17 × 10−6 ℧ cm−1.

  • The obtained consequences revealed that desired properties of Cu+2 doped Fe3O4 NPs can be obtained by controlling the substituting content in host material.

  • The Fe3O4 NPs with Cu2+ do** exhibited higher electrical conductivity and become an excellent candidate for development of electronic and optoelectronic devices, such as, photo-detector, sensors and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Niculescu AG, Chircov C, Grumezescu AM (2022) Magnetite nanoparticles: Synthesis methods–a comparative review. Methods 199:16–27

    Article  CAS  PubMed  Google Scholar 

  2. Chifiriuc MC, Grumezescu AM, Andronescu E, Ficai A, Cotar AI, Grumezescu V, Radulescu R (2013) Water dispersible magnetite nanoparticles influence the efficacy of antibiotics against planktonic and biofilm embedded Enterococcus faecalis cells. Anaerobe 22:14–19

    Article  CAS  PubMed  Google Scholar 

  3. Sebastian Cabeza V (2016) Chapter High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches

  4. Shaoqiang Z, Dong T, Geng Z, Lin H, Hua Z, Jun H, Wei Z (2021) The influence of grain size on the magnetic properties of Fe3O4 nanocrystals synthesized by solvothermal method. J Sol Gel Sci Technol 98(2):422–429

    Article  Google Scholar 

  5. Mihai AD, Chircov C, Grumezescu AM, Holban AM (2020) Magnetite nanoparticles and essential oils systems for advanced antibacterial therapies. Int J Mol Sci 21(19):7355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jayakrishnan P, Ramesan MT (2017) Studies on the effect of magnetite nanoparticles on magnetic, mechanical, thermal, temperature dependent electrical resistivity and DC conductivity modeling of poly (vinyl alcohol-co-acrylic acid)/Fe3O4 nanocomposites. Mater Chem Phys 186:513–522

    Article  CAS  Google Scholar 

  7. Kumar DS, Naidu KCB, Rafi MM, Nazeer KP, Begam AA, Kumar GR (2018) Structural and dielectric properties of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by sugar solutions. Mater Sci Pol 36:123–133

    Article  ADS  CAS  Google Scholar 

  8. Zhao F, Zhang B, Feng L (2012) Preparation and magnetic properties of magnetite nanoparticles. Mater Lett 68:112–114

    Article  CAS  Google Scholar 

  9. Afzal F, Rehman AU, Rafique MD, Ansar MT, Munir MA, Hussain Q (2021) High-performance SnO2 nanotubes as efficient electrode materials. Nano Struct Nano Objects 26:100740

    Article  CAS  Google Scholar 

  10. Kamboj, N, Dey, A, Lama, P, Majumder, M, Sengupta, S, & Metre, RK (2023). A closed-shell phenalenyl-based dinuclear iron (iii) complex as a robust cathode for a one-compartment H2O2 fuel cell. Dalton Trans 52:17163–17175

  11. Chen GH, Chen HS (2020) Nanometer-thick Sol–Gel Silica–Titania film infused with superparamagnetic Fe3O4 nanoparticles for electromagnetic interference shielding. ACS Appl Nano Mater 3(9):8858–8865

    Article  CAS  Google Scholar 

  12. Mohammadi H, Nekobahr E, Akhtari J, Saeedi M, Akbari J, Fathi F (2021) Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicol Rep 8:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Căpraru A, Moacă EA, Păcurariu C, Ianoş R, Lazău R, Barbu-Tudoran L (2021) Development and characterization of magnetic iron oxide nanoparticles using microwave for the combustion reaction ignition, as possible candidates for biomedical applications. Powder Technol 394:1026–1038

    Article  Google Scholar 

  14. Hossain MS, Akter Y, Shahjahan M, Bashar MS, Begum MHA, Hossain MM, Al-Mamun M (2019) Influence of Ni substitution on structural, morphological, dielectric, magnetic and optical properties of Cu–Zn ferrite by double sintering sol–gel technique. J Adv Dielectr 9(02):1950020

    Article  CAS  Google Scholar 

  15. Parhizkar J, Habibi MH (2017) Synthesis, characterization and photocatalytic properties of Iron oxide nanoparticles synthesized by sol-gel autocombustion with ultrasonic irradiation. Nanochem Res 2(2):166–171

    CAS  Google Scholar 

  16. Kamboj N, Betal A, Majumder M, Sahu S, Metre RK (2023) Redox switching behavior in resistive memory device designed using a solution-processable phenalenyl-based Co (II) complex: experimental and DFT studies. Inorg Chem 62(10):4170–4180

    Article  CAS  PubMed  Google Scholar 

  17. Fu R, ** X, Liang J, Zheng W, Zhuang J, Yang W (2011) Preparation of nearly monodispersed Fe3O4/SiO2 composite particles from aggregates of Fe3O4 nanoparticles. J Mater Chem 21(39):15352–15356

    Article  CAS  Google Scholar 

  18. Hedayati K, Goodarzi M, Ghanbari D (2017) Hydrothermal synthesis of Fe3O4 nanoparticles and flame resistance magnetic poly styrene nanocomposite. J Nanostruct 7(1):32–39

    CAS  Google Scholar 

  19. Jung E, Kim SW, Cho A, Kim YJ, Jeong GJ, Kim J, Yu T (2019) Synthesis of sub 3 nm-sized uniform magnetite nanoparticles using reverse micelle method for biomedical application. Materials 12(23):3850

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prabowo B, Khairunnisa T, Nandiyanto ABD (2018) Economic perspective in the production of magnetite (Fe3O4) nanoparticles by co-precipitation method. World Chem Eng J 2(2):1–4

    Google Scholar 

  21. Takai ZI, Mustafa MK, Asman S, Sekak KA (2019) Preparation and characterization of magnetite (Fe3O4) nanoparticles by sol-gel method. Int J Nanoelectron Mater 12:37–46

    Google Scholar 

  22. Hu P, Chang T, Chen WJ, Deng J, Li SL, Zuo YG, Volinsky AA (2019) Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol-gel explosion-assisted method. J Alloy Compd 773:605–611

    Article  CAS  Google Scholar 

  23. Kushwaha P, Chauhan P (2022) Influence of different surfactants on morphological, structural, optical, and magnetic properties of α-Fe2O3 nanoparticles synthesized via co-precipitation method. Appl Phys A 128(1):1–14

    Article  Google Scholar 

  24. Sekar AD, Jayabalan T, Muthukumar H, Chandrasekaran NI, Mohamed SN, Matheswaran M (2019) Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode. Energy 172:173–180

    Article  CAS  Google Scholar 

  25. Rani S, Varma GD (2015) Superparamagnetism and metamagnetic transition in Fe3O4 nanoparticles synthesized via co-precipitation method at different pH. Phys B Condens Matter 472:66–77

    Article  ADS  CAS  Google Scholar 

  26. Chavan VD, Kothavale VP, Sahoo SC, Kollu P, Dongale TD, Patil PS, Patil PB (2019) Adsorption and kinetic behavior of Cu (II) ions from aqueous solution on DMSA functionalized magnetic nanoparticles. Phys B Condens Matter 571:273–279

    Article  ADS  CAS  Google Scholar 

  27. Shatooti S, Mozaffari M, Reiter G, Zahn D, Dutz S (2022) An investigation on the heat dissipation in Zn-substituted magnetite nanoparticles, coated with citric acid and pluronic F127 for hyperthermia application. Phys B Condens Matter 625:413468

    Article  CAS  Google Scholar 

  28. Anandhi JS, Arun T, Joseyphus RJ (2020) Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles. Phys B Condens Matter 598:412429

    Article  CAS  Google Scholar 

  29. Mocherla PS, Karthik C, Ubic RNAR, Ramachandra Rao MS, Sudakar C (2013) Tunable bandgap in BiFeO3 nanoparticles: the role of microstrain and oxygen defects. Appl Phys Lett 103(2):022910

    Article  ADS  Google Scholar 

  30. Kamboj N, Mali G, Lama P, Erande RD, Metre RK (2022) Designing a redox noninnocent phenalenyl-based copper (II) complex: an autotandem catalyst for the selective oxidation of polycyclic aromatic hydrocarbons (PAHs). ACS Omega 7(10):8789–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Munir MA, Naz MY, Shukrullah S, Farooq MU, Kamran K, Irfan M, Ghanim AAJ (2023) Testing of magnetic and dielectric traits of microwave plasma treated NiCuZn spinel ferrites for efficient energy storage and high-frequency applications. Mater Sci Eng B 291:116374

    Article  CAS  Google Scholar 

  32. Chandekar KV, Kant KM (2017) Strain induced magnetic anisotropy and 3d7 ions effect in CoFe2O4 nanoplatelets. Superlattices Microstructures 111:610–627

    Article  ADS  CAS  Google Scholar 

  33. Chandekar KV, Kant KM (2018) Size-strain analysis and elastic properties of CoFe2O4 nanoplatelets by hydrothermal method. J Mol Struct 1154:418–427

    Article  CAS  Google Scholar 

  34. Shah ZH, Riaz S, Kayani ZN, Naseem S (2016) Size distribution and magnetic optimization of phase pure chromium doped magnetite nanoparticles. In The 2016 World Congress on Advances in Civil, Environmental and Materials Research (ACEM’16). ICC Jeju, Jeju Island, Korea

  35. Tahir MS, Lee JW, Rabani I, Afzal F, Han YJ, Park HY, Seo YS (2023) Analysis of the porosity of ZIF-8 and ZIF-8@ CNF membranes using positron annihilation lifetime spectroscopy (PALS). J Radioanal Nucl Chem 332:3967–3975.

  36. López YC, Acevedo-Peña P, Ortega GA, Reguera E (2021) Unraveling the Fe3O4 NPs role in self-assembled magnetic zinc oxide nanorods for methylene blue photodegradation. J Photochem Photobiol A Chem 421:113514

    Article  Google Scholar 

  37. Rabani I, Tahir MS, Lee WI, Truong HB, Dastgeer G, Seo YS (2023) Palladium nanoparticle formation on boron nitride nanotubes and their photocatalytic performance with visible light. J Clean Prod 420:138324

    Article  CAS  Google Scholar 

  38. Butnoi P, Pangon A, Berger R, Butt HJ, Intasanta V (2021) Electrospun nanocomposite fibers from lignin and iron oxide as supercapacitor material. J Mater Res Technol 12:2153–2167

    Article  CAS  Google Scholar 

  39. Badawi A, Althobaiti MG, Alharthi SS, Al-Baradi AM (2021) Tailoring the optical properties of CdO nanostructures via barium do** for optical windows applications. Phys Lett A 411:127553

    Article  CAS  Google Scholar 

  40. Chandekar KV, Shkir M, Khan A, Sayed MA, Alotaibi N, Alshahrani T, AlFaify S (2021) Significant and systematic impact of yttrium do** on physical properties of nickel oxide nanoparticles for optoelectronics applications. J Mater Res Technol 15:2584–2600

    Article  CAS  Google Scholar 

  41. Chandekar KV, Shkir M, Palanivel B, Ahmad Z, Algarni H, AlFaify S (2021) Comparative study of Pr-doped and undoped PbS nanostructures facilely synthesized for optoelectronic applications. Solid State Sci 122:106773

    Article  CAS  Google Scholar 

  42. Shkir M, Chandekar KV, Alshahrani T, Kumar A, Khan A, AlFaify S (2020) An impact of La do** content on key physical properties of PbS spherical nanoparticles facilely synthesized via low temperature chemical route. Eur Phys J 135(10):816

    CAS  Google Scholar 

  43. Yousuf MA, Jabeen S, Shahi MN, Khan MA, Shakir I, Warsi MF (2020) Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route. Results Phys 16:102973

    Article  Google Scholar 

  44. Adebayo LL, Soleimani H, Guan BH, Öchsner A, Sabet M, Yusuf JY, Ali H (2021) A simple route to prepare Fe3O4@C microspheres as electromagnetic wave absorbing material. J Mater Res Technol 12:1552–1563

    Article  CAS  Google Scholar 

  45. Jabir MS, Nayef UM, Kadhim WKA (2019) Polyethylene glycol-functionalized magnetic (Fe3O4) nanoparticles: A novel DNA-mediated antibacterial agent. Nano Biomed Eng 11(1):18–27

    Article  CAS  Google Scholar 

  46. Afzal S, Khan R, Zeb T, Ali S, Khan G, Hussain A (2018) Structural, optical, dielectric and magnetic properties of PVP coated magnetite (Fe3O4) nanoparticles. J Mater Sci Mater Electron 29(23):20040–20050

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project Number (RSP2023R243) King Saud University, Riyadh, SaudiArabia.

Author contributions

SS: Conceptualization, Writing-Original Draft, Methodology, Investigation, Data Curation, Validation. MHJ: Formal analysis, Writing and editing, AAA: Language Editing, Writing-Review & Editing, MZHBM: Language Editing, Writing-Review & Editing, TY: Writing-Review & Editing, MRA: Writing-Review & Editing, AA: Writing-Review & Editing, AZ: Writing-Review & Editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahroz Saleem.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, S., Jameel, M.H., Alothman, A.A. et al. A band gap engineering for the modification in electrical properties of Fe3O4 by Cu2+ do** for electronic and optoelectronic devices applications. J Sol-Gel Sci Technol 109, 471–482 (2024). https://doi.org/10.1007/s10971-023-06287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06287-4

Keywords

Navigation