Log in

A drug delivery system with fluorescent labeling for the delivery and release of the carboxylate-type camptothecin and its cytotoxicity on HepG2 cancer cell

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

To facilitate the loading and targeted delivery of drugs, the camptothecin with negatively charged is used for the intercalation of Eu3+-doped MgAl-LDH with fluorescent property. X-ray diffraction (XRD) results show that the basal spacing (27.3 Å) of the intercalated sample is significantly greater than that of the initial Eu3+-doped MgAl-LDH (8.6 Å), implying the intercalation of the carboxylate-type camptothecin in the interlayer of the Eu3+-doped MgAl-LDH. The in vitro release assay in phosphate buffer solution (PBS) at pH of 7.4 reveals that the camptothecin shows a sustained release and the release is up to 900 min. The cumulative concentration (C) of the releasing camptothecin versus time (t) is fitted by the ExpDec2 Model, and is consistent with the equation: C=A1exp(-t/t1)+A2exp(-t/t2) + C0 (R2 = 0.99886). In addition, the fluorescent signals of the drug delivery system differ significantly during delivery and release of camptothecin, by which the delivery and release of camptothecin may be “recognized”. Cytotoxicity assay confirms that the Eu3+-doped MgAl-LDH loaded with the carboxylate-type camptothecin takes an obvious anticancer effect against HepG2 cancer cell, and the anticancer effect is better than that of the pure lactone-type camptothecin, which is very different from the prevailing view that the carboxylate camptothecin has no anticancer activity.

Graphical Abstract

Highlights

  • The intercalation of Camp into Eu3+-doped MgAl-LDH.

  • Drug delivery system exhibited different fluorescence during drug delivery and release.

  • The carboxylate-type Camp intercalated in the Eu3+-doped LDH exhibited obvious anticancer effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. El-Sayed AS, Zayed RA, El-Baz AF, Ismaeil WM (2022) Bioprocesses optimization and anticancer activity of camptothecin from Aspergillus flavus, an endophyte of in vitro cultured Astragalus fruticosus. Mole Bio Rep. 49:4349–4364

    Article  CAS  Google Scholar 

  2. Zhang N, Liang XL, Gao C, Chen M, Zhou YM, Krueger CY (2018) Loading lovastatin into camptothecin −floxuridine conjugate nanocapsules for enhancing anti-metastatic efficacy of cocktail chemotherapy on triple-negative breast cancer. ACS Appl Mater Inter 10(35):29385–29397

    Article  CAS  Google Scholar 

  3. Tsuchihashi Y, Abe S, Miyamoto L, Tsunematsu H, Izumi T, Hatano A (2020) Novel hydrophilic camptothecin derivatives conjugated to branched glycerol trimer suppress tumor growth without causing diarrhea in murine xenograft models of human lung cancer. Mol Pharm 17(4):1049–1058

    Article  CAS  Google Scholar 

  4. Galatage ST, Trivedi R, Bhagwat DA (2021) Characterization of camptothecin by analytical methods and determination of anticancer potential against prostate cancer. Futur J Pharm Sci 7:104

    Article  Google Scholar 

  5. Baig MM, Lai WF, Ashraf S, Saleem A, Akhtar MF, Mikrani R (2020) The integrin facilitated internalization of fibronectin-functionalized camptothecin-loaded DNA-nanofibers for high- efficiency anticancer effects. Drug Deliv Transl Res 10:1381–1392

    Article  CAS  Google Scholar 

  6. Kostjukov VV (2021) Theoretical analysis of lactone and carboxylate forms of camptothecin in aqueous solution: Electronic states, absorption spectra, and hydration. J Mole Liq 344:117804

    Article  CAS  Google Scholar 

  7. Šteklác M, Breza M (2022) DFT studies of s cytotoxicity II. Protonated lactone forms of camptothecin. Comput Theor Chem 1211:113677

    Article  Google Scholar 

  8. Alshammari MK, Alshehri MM, Alshehri AM, Alshlali OM, Mahzari AM, Almalki HH, Kulaybi OY, Alghazwni MK, Kamal M, Imran M (2023) Camptothecin loaded nano-delivery systems in the cancer therapeutic domains: A critical examination of the literature. J Drug Deliv Sci Technol 79:104034

    Article  CAS  Google Scholar 

  9. Follmann HD, Oliveira Jr ON, Martins AC, Lazarin-Bidóia D, Nakamura CV, Rubira AF, Silva R, Asefa T (2020) Nanofibrous silica microparticles/polymer hybrid aerogels for sustained delivery of poorly water-soluble camptothecin. J Colloid Inter Sci 567:92–102

    Article  CAS  Google Scholar 

  10. Patila AR, Nimbalkarb MS, Patila PS, Chougalec AD, Patil PB (2020) Controlled release of poorly water soluble anticancerous drug from magnetic nanoparticles. Mater Today: Proc 23:437–443

    Google Scholar 

  11. Ünal S, Öztürk SC, Bilgiç E, Yanık H, Korkusuz P, Aktas Y, Benito JM, Esendağl G, Bilensoy E (2021) Therapeutic efficacy and gastrointestinal biodistribution of polycationic nanoparticles for oral camptothecin delivery in early and late-stage colorectal tumor-bearing animal model. Eur J Pharm Biopharm 169:168–177

    Article  Google Scholar 

  12. Behera A, Padhi S (2020) Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review. Enviro Chem Lett 18:1557–1567

    Article  CAS  Google Scholar 

  13. Chen D, Bi J, Wu J (2020) Zirconium based nano metal–organic framework UiO-67- NH2 with high drug loading for controlled release of camptothecin. J Inorg Organomet Polym 30:573–579

    Article  CAS  Google Scholar 

  14. Landgraf M, Lahr CA, Kaur I, Shafiee A, Sanchez-Herrero A, Janowicz PW, Ravichandran A, Howard CB, Cifuentes-Rius A, McGovern JA, Voelcker NH, Hutmacher DW (2020) Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials 240:119791

    Article  CAS  Google Scholar 

  15. Almeida A, Castro F, Resende C, Lúcio M, Schwartz Jr S, Sarmento B (2022) Oral delivery of camptothecin-loaded multifunctional chitosan-based micelles is effective in reduce colorectal cancer. J Control Release 349:7317–43

    Article  Google Scholar 

  16. Yang YH, Ren GJ, Yang WK, Lin DY, Li ML, Chang Z, Fang Y, Liang ZQ, Pan QH (2021) Single-crystal to single-crystal transformation of metal−organic framework nanoparticles for encapsulation and pH-stimulated release of camptothecin. ACS Appl Nano Mater 4(7):7191–7198

    Article  CAS  Google Scholar 

  17. Huarte J, Espuelas S, Lai Y, He B, Tang J, Irache JM (2016) Oral delivery of camptothecin using cyclodextrin/poly(anhydride) nanoparticles. Intern J Pharm 506:116–128

    Article  CAS  Google Scholar 

  18. Wang JH, Muhammad N, Li TT, Wang H, Liu YJ, Liu BN, Zhan HL (2020) Hyaluronic acid-coated camptothecin nanocrystals for targeted drug delivery to enhance anticancer Efficacy. Mol Pharm 17(7):2411–2425

    Article  CAS  Google Scholar 

  19. Checa-Chavarria E, Rivero-Buceta E, Martos MA, Navarrete GM, Soto-Sánchez C, Botella P, Fernández E (2021) Development of a prodrug of camptothecin for enhanced treatment of glioblastoma multiforme. Mol Pharm 18(4):1558–1572

    Article  CAS  Google Scholar 

  20. Ma M, Shang W, Jia R (2020) A novel folic acid hydrogel loading β-cyclodextrin/ camptothecin inclusion complex with effective antitumor activity. J Incl Phenom Macrocycl Chem 96:169–179

    Article  CAS  Google Scholar 

  21. Kaassis AY, Al-Jamal WT, Strimaite M, Severic M, Williams GR (2022) Biocompatible hydroxy double salts as delivery matrices for non-steroidal anti-inflammatory and anti-epileptic drugs. Appl Clay Sci 221:106456

    Article  CAS  Google Scholar 

  22. Yang L, He XL, **g GX, Wang H, Niu JT, Qian YC, Wang SL (2021) Layered double hydroxide nanoparticles with osteogenic effects as miRNA carriers to synergistically promote osteogenesis of MSCs. ACS Appl Mater Inter 13(41):48386–48402

    Article  CAS  Google Scholar 

  23. Mishra G, Dash B, Pandey S (2018) Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl Clay Sci 153:172–186

    Article  CAS  Google Scholar 

  24. Mokhtari S, Solati-Hash** M, Khosrowpour Z, Gholipour- malekabadi M (2021) Layered double hydroxide-galactose as an excellent nanocarrier for targeted delivery of curcumin to hepatocellular carcinoma cells. Appl Clay Sci 200:105891

    Article  CAS  Google Scholar 

  25. Wang AT, Yang W, Yang XY, Mei X, Hu TT, Liang RZ, Meng DL, An YN (2020) MgAl monolayer hydrotalcite increases the hypoglycemic effect of berberine by enhancing its oral bioavailability. Biomed Pharmacother 127:110140

    Article  CAS  Google Scholar 

  26. Sohrabnezhad S, Poursafar Z, Asadollahi A (2020) Synthesis of novel core@shell of MgAl layered double hydroxide @ porous magnetic shell (MgAl-LDH@PMN) as carrier for ciprofloxacin drug. Appl Clay Sci 190:105586

    Article  CAS  Google Scholar 

  27. Beltrán-Osuna AA, Perilla JE (2016) Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. J Sol-Gel Sci Technol 77:480–496

    Article  Google Scholar 

  28. Moradi O, Mahdavian L (2021) Simulation and computational study of graphene oxide nano-carriers, absorption, and release of the anticancer drug of camptothecin. J Mol Model 27:251

    Article  CAS  Google Scholar 

  29. Qiu XX, Yin SY, Li C, Zhang YJ, Li YX, Chen YF (2022) A drug delivery system with red fluorescence for the delivery and release of 5-fluorouracil in vitro. Chem Pap 76:2221–2234

    Article  CAS  Google Scholar 

  30. Chen YF, Li TT, Qiu XX, Shang XQ (2022) Eu3+‑doped MgAl LDH with fluorescence as carrier for 5‑fluorouracil: intercalation and release. Res Chem Intermed 48:4797–4814

  31. Dong L, Li Y, Hou WG, Liu SJ (2010) Synthesis and release behavior of composites of amptothecin and layered double hydroxide. J Solid State Chem 183(8):1811–1816

    Article  CAS  Google Scholar 

  32. Tyner KM, Schiffman SR, Giannelis EP (2004) Nanobiohybrids as delivery vehicles for camptothecin. J Control Release 95(3):501–514

    Article  CAS  Google Scholar 

  33. Du N, Hou WG, Liu SJ (2014) Synthesis and release behavior of a hybrid of camptothecin intercalated dodecyl sulfate modified layered double hydroxide. Chem Res Chin Univ 30(1):137–143

    Article  CAS  Google Scholar 

  34. Wu XW, Li HP, Song S, Zhang RJ, Hou WG (2013) Facile synthesis of camptothecin intercalated layered double hydroxide nanohybrids via a coassembly route. Intern J Pharm 454(1):453–461

    Article  CAS  Google Scholar 

  35. Zhang YF, Wu XW, Mi YW, Li HP, Hou WG (2017) Engineering of (10-hydroxy- camptothecin intercalated layered double hydroxide)@liposome nanocomposites with excellent water dispersity. J Phys Chem Solids 108:125–132

    Article  CAS  Google Scholar 

  36. Liu CX, Hou WG, Li Y, Li LF (2008) Synthesis and characterization of camptothecin intercalated into Mg/Al layered double hydroxide. Chin J Chem 26(10):1806–1810

    Article  CAS  Google Scholar 

  37. Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  38. Subramanian N, Sundaraganesan N, Sudha S, Aroulmoji V, Sockalingam GD, Bergamin M (2011) Experimental and theoretical investigation of the molecular and electronic structure of anticancer drug camptothecin. Spectrochimica Acta Part A 78:1058–1067

    Article  CAS  Google Scholar 

  39. Santos AC, Costa D, Ferreira L, Guerra C, Pereira-Silva M, Pereira I (2021) Cyclodextrin- based delivery systems for in vivo-tested anticancer therapies. Drug Deliv Transl Res 11:49–71

    Article  CAS  Google Scholar 

  40. Asiabia H, Yamini Y, Alipour M, Shamsayei M, Hosseinkhani S (2019) Synthesis and characterization of a novel biocompatible pseudo-hexagonal NaCa-layered double metal hydroxides for smart pH-responsive drug release of dacarbazine and enhanced anticancer activity in malignant melanoma. Mater Sci Eng C 97:96–102

    Article  Google Scholar 

  41. Liu CX, Hou WG, Li LF, Li Y, Liu SJ (2008) Synthesis and characterization of 5-fluoro-cytosine intercalated Zn–Al layered double hydroxide. J Solid State Chem 181:1792–1797

    Article  CAS  Google Scholar 

  42. Chapman AC, Thirlwell LE (1964) Spectra of phosphorus compounds-I the infra-red spectra of orthophosphates. Spectrochimica Acta 20:937–947

    Article  CAS  Google Scholar 

  43. Sun C, Wang YK, Wu LX, Hu J, Long XQ, Wu HT, Jiao FP (2022) In situ preparation of novel p–n junction photocatalyst MgAl-LDH/(BiO)2CO3 for enhanced photocatalytic degradation of tetracycline. Mater Sci Semicond Proc 150:106939

    Article  CAS  Google Scholar 

  44. Fang CQ, Dai YM, Chen L, Wang H, Lu Q, Li YQ, Cai L, Liu B, Zhang YF, Li Y, Wan L (2022) One-step coprecipitation synthesis of Cl− intercalated Fe3O4@SiO2 @MgAl LDH nanocomposites with excellent adsorption performance toward three dyes. Separa Purif Technol 295:121227

    Article  CAS  Google Scholar 

  45. Kang JG, Jung Y, Min BK, Sohn Y (2014) Full characterization of Eu(OH)3 and Eu2O3 nanorods. Appl Surf Sci 314:158–165

    Article  CAS  Google Scholar 

  46. Mishra SK, Bhattacharyya AS, Rupa PK, Patha LC (2012) XPS Studies on nanocomposite Si –C–N coatings deposited by magnetron sputtering. Nanosci Nanotech Lett 4:352–357

    Article  CAS  Google Scholar 

  47. Nagita K, Yuhara Y, Fujii K, Katayama Y, Nakayama M (2021) Ni- and Cu-co-intercalated layered manganese oxide for highly efficient electro-oxidation of ammonia selective to nitrogen. ACS Appl Mater Inter 13(24):28098–28107

    Article  CAS  Google Scholar 

  48. Kaliyamoorthi K, Pillai AS, Alexander A, Ramasamy S, Arivarasu A, Enoch IV (2021) Designed poly(ethylene glycol) conjugate-erbiumdoped magnetic nanoparticle hybrid carrier: enhanced activity of anticancer drug. J Mater Sci 56:3925–3934

    Article  CAS  Google Scholar 

  49. Qi J, Liu GY, Dong Y(2020) Probing the hydrophobic mechanism of N-[(3-hydroxyamino)- propoxy]-N-octyl dithiocarbamate toward bastnaesite flotationby in situ AFM, FTIR and XPS J Colloid & Interf Sci 572:179–189

  50. Al-Wahaibia LH, Sert Y, Ucunc Y, Al-Shaalana NH, Alsfoukd A, El-Emame AA (2019) Theoretical and experimental spectroscopic studies, XPS analysis, dimer interaction energies and molecular docking study of 5-(adamantan-1-yl)-Nmethyl-1,3,4-thiadiazol-2-amine. J Phys Chem Solids 135:109091

    Article  Google Scholar 

  51. King A, Singh R, Anand R, Behera SK, Nayak BB (2022) Dopant concentration induced tuning of emission in Eu3+-doped zirconia nanoparticles. J Phys Chem Solids 163:110575

    Article  CAS  Google Scholar 

  52. Shu J, Jia ZT, Damiano E, Wang HY, Yin YR, Lin N (2018) Charge compensations of Eu2+ and Oi2− co-exist in Eu3+:CaMoO4 single-crystal fibers grown by the micro-pulling- down method. CrystEngComm 2(8):6741–6751

    Article  Google Scholar 

  53. Viscusi G, Gorrasi G (2021) Facile preparation of layered double hydroxide (LDH)-alginate beads as sustainable system for the triggered release of diclofenac: Effect of pH and temperature on release rate. Intern J Bio Macromole 184:271–281

    Article  CAS  Google Scholar 

  54. Li Y, Du N, Hou WG, Liu SJ (2014) Synthesis and release behavior of a hybrid of camptothecin intercalated dodecyl sulfate modified layered double hydroxide. Chem Res Chin Univ 30(1):137–143

    Article  Google Scholar 

  55. Ebadi M, Bullo S, Buskara K, Hussein MZ, Fakurazi S, Pastorin G (2020) Release of a liver anticancer drug,sorafenib from its PVA/LDHand PEG/LDH‑coated iron oxide nanoparticles for drug delivery applications. Sci Rep. 10:21521

    Article  CAS  Google Scholar 

  56. Fujii T, Minagawa T, Shimizu T, Takeguchi N, Sakai H (2012) Inhibition of ecto-ATPase activity by curcumin in hepatocellular carcinoma HepG2 cells. J Physiol Sci 62:53–58

    Article  CAS  Google Scholar 

  57. Kruszewski S, Kruszewska DM (2010) Fluorescence spectroscopy in s studies. Acta Phys Polo 118:99–102

    Article  CAS  Google Scholar 

  58. Dey J, Warner IM (1996) Excited state tautomerization of camptothecin in aqueous solution. J Photochem Photobio A: Chem 101:21–27

    Article  CAS  Google Scholar 

  59. Mi ZH, Burke TG (1994) Differential interactions of lactone and carboxylate forms with human blood components. Biochemistry 34(33):10325–10336

    Article  Google Scholar 

  60. Yang J, Huang SC, Wang Y, Ji MY, Hu YJ (2021) Multispectroscopic, electrochemical and molecular docking approaches on binding comparison of camptothecin, 10-hydroxy - to bovine serum albumin. J Mole Liq 326:115296

    Article  CAS  Google Scholar 

  61. Marques F, Cunha A, Aucélio R (2010) Laser induced fluorescence and photochemical derivatization for trace determination of camptothecin. Talanta 83:256–261

    Article  CAS  Google Scholar 

  62. Lien NT, Trac NN, Do PV, Tuyen HV (2022) Judd-Ofelt analysis of Eu3+ and adjustable emission in Eu3+/Eu2+ co-doped sodium aluminosilicate glasses. J Phys Chem Solids 164:110637

    Article  CAS  Google Scholar 

  63. Guzmán-Rocha M, Oliva J, Diaz-Torres LA, Montes E (2020) Effect of the reducing atmospheres on the photoluminescent and phosphorescent properties of Sr4Al14O25:Eu2+, Dy3+, Cr3+ phosphors. J Sol-Gel Sci Technol 95:423–431

    Article  Google Scholar 

  64. Trupp L, Marchi MC, Barja BC (2022) Lanthanide–based luminescent hybrid silica materials prepared by sol-gel methodologies: a review. J Sol-Gel Sci Technol 102:63–85

    Article  CAS  Google Scholar 

  65. Oguzlar S, Ongun MZ, Keskin OY, Delice TK, Azem FA, Birlik I, Ertekin K (2020) Investigation of spectral interactions between a SrAl2O4:Eu2+, Dy3+ phosphor and nano-scale TiO2. J Fluores 30:839–847

    Article  CAS  Google Scholar 

  66. Jain A, Mehare CM, Tamboli S, Dhoble SJ (2021) Eu2+-doped microporous aluminosilicate Ca-chabazite Ca1.9Al3.8Si8.2O24 phosphor: synthesis and characterization of potential blue phosphor for NUV wLED. J Mater Sci: Mater Electron 32:6984–6991

    CAS  Google Scholar 

  67. Jung H, Kim H, Byeon SH (2018) Luminescent carrier, Tb3+-doped layered yttrium hydroxide, for delivery systems. ACS Appl Mater Inter 10(49):43112–43121

    Article  CAS  Google Scholar 

  68. Andrade KN, Knauth P, López Z, Hirata GA, Martinez SJ, Arízaga GG (2020) Assembly of folate-carbon dots in GdDy-doped layered double hydroxides for targeted delivery of doxorubicin. Appl Clay Sci 192:105661

    Article  Google Scholar 

  69. Chen X, Lv FZ, Ma Y, Zhang YH (2016) Preparation and spectroscopic investigation of novel NaAlP2O7:Eu2+ phosphors for white LEDs. J Alloy Compds 680:20–25

    Article  CAS  Google Scholar 

  70. Wang P, Qiu LT, Wei XT, Yin M, Chen YH (2021) Enhanced luminescence and tunable color in [Eu2+, Si4+]/Mn2+ doped K2BaCa(PO4)2 based on charge compensation and energy transfer. Dalton Trans 50:8144–8153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, T., Qiu, X. et al. A drug delivery system with fluorescent labeling for the delivery and release of the carboxylate-type camptothecin and its cytotoxicity on HepG2 cancer cell. J Sol-Gel Sci Technol 108, 640–654 (2023). https://doi.org/10.1007/s10971-023-06218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06218-3

Keywords

Navigation