Log in

Microscopic evolution of the conformation for polyamidoxime molecular chains under various uranium adsorption conditions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Among uranium extraction materials, amidoxime polymers are very promising. But the conformation of molecular chains is not well understood. Herein, conformation behavior of polyamidoxime (PAO) was analyzed via molecular dynamics. In water, the conformation of PAO is extended, its radius of gyration (Rg) is 12.5 Å. However, the Rg of polyacrylonitrile is merely 6.2 Å. The PAO conformation collapses due to uranyl and sodium ions. Moreover, small angle X-ray scattering showed that Rg from 11.6 to 11.0 nm after uranium adsorption. Overall, this work will be beneficial to the design of new uranium adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sovacool BK (2020) Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power. Nat Energy 5(11):928–935

    Article  Google Scholar 

  2. Das S (2016) Extracting uranium from seawater: promising AF series adsorbents. Ind Eng Chem Res 55(15):4110–4117

    Article  CAS  Google Scholar 

  3. Sholl DS (2016) Seven chemical separations to change the world. Nature 532(7600):435–437

    Article  PubMed  Google Scholar 

  4. Tang N (2020) Amidoxime-based materials for uranium recovery and removal. J Mater Chem A 8(16):7588–7625

    Article  CAS  Google Scholar 

  5. Abney C (2017) Materials for the recovery of uranium from seawater. Chem Rev 117(23):13935–14013

    Article  CAS  PubMed  Google Scholar 

  6. Chen L (2017) Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended met-al-organic framework. ACS Appl Mater Interfaces 9(38):32446–32451

    Article  CAS  PubMed  Google Scholar 

  7. Xu X (2019) 3D Hierarchical porou-s amidoxime fibers speed up uranium extraction from seawater. Energy Environ Sci 12(6):1979–1988

    Article  CAS  Google Scholar 

  8. Yu J (2022) An high-flux antibacterial poly(amidoxime)-polyacrylonitrile blend membrane for highly efficient uranium extraction from seawater. J Hazard Mater 440:129735

    Article  CAS  PubMed  Google Scholar 

  9. Tian G (2023) Research review and prospect of uranium extraction from seawater with amidoxime-based materials. At Energy Sci Technol 57(01):1–22

    CAS  Google Scholar 

  10. Lashley M (2016) Amidoximes as ligand functionalities for braided polymeric materials for the recovery of uranium from seawater. Polyhedron 109:81–91

    Article  CAS  Google Scholar 

  11. Liu T (2022) Complexation of uranyl(VI) with succinimidedioxime in comparison with glutarimide-dioxide. New J Chem 46(17):8053–8061

    Article  CAS  Google Scholar 

  12. Wiechert A (2018) Influence of hydrophilic groups and metal ion adsorption on polymer chain conformation of amidoxime-based uranium adsorbents. J Colloid Interface Sci 524:399–408

    Article  CAS  PubMed  Google Scholar 

  13. Saito T (2014) Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J Mater Chem A 2(35):14674–14681

    Article  CAS  Google Scholar 

  14. **e Y (2022) Uranium extraction from seawater: material design, emerging technologies and marine engineering. Chem Soc Rev 52(1):97–162

    Article  Google Scholar 

  15. Li L (2023) Effects of chain conformation on uranium adsorption performance of amidoxime adsorbents. Sep Purif Technol 307:122777

    Article  CAS  Google Scholar 

  16. Gao X (2009) Chain conformation of a new class of PEG-based thermoresponsive polymer brushes grafted on silicon as determined by neutron reflectometry. Langmuir 25(17):10271–10278

    Article  CAS  PubMed  Google Scholar 

  17. Ell JR (2009) Structural determination of high density, ATRP grown polystyrene brushes by neutron reflectivity. Macromolecules 42(24):9523–9527

    Article  CAS  Google Scholar 

  18. Earl L (2018) Polyamidoxime chain length drives emergent metal-binding phenomena. Phys Chem Chem Phys 21(2):554–560

    Article  Google Scholar 

  19. Shi X (2022) Structure and transport of polystyrene-b-poly (acrylic acid) micelles incorporating uranyl carbonate: a model for NOM-U(VI) colloid. Environ Sci Nano 9(7):2587–2595

    Article  CAS  Google Scholar 

  20. Liu Z (2022) Multi-scale computer aided design and photocontrolled macromolecular synthesis boosting uranium harvesting from seawater. Nat Commun 13(1):3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marañon J (1999) Adenine-thymine molecular dyna-mics simulation. Conformation, hydration and magnetic behaviour. J Mol Liq 79(3):177–186

    Article  Google Scholar 

  22. Chen ZG (2020) The analysis of the effects of high hydrostatic pressure (HHP) on amylose molecular conformation at atomic level based on molecular dynamics simulation. Food Chem 327:127047

    Article  CAS  Google Scholar 

  23. Lan T (2016) Dynamics of humic acid and its interaction with uranyl in the presence of hydrophobic surface implicated by molecular dynamics simulations. Environ Sci Technol 50(20):11121–11128

    Article  CAS  PubMed  Google Scholar 

  24. Zhang ZQ (2022) Protein conformation and electric attraction adsorption mechanisms on anodized magnesium alloy by molecular dynamics simulations. J Magnesium Alloys 10(11):3143–3155

    Article  CAS  Google Scholar 

  25. Hu G (2020) Molecular dynamics simulation of solid/liquid interfacial energy of uranium. J Nucl Mater 538:152183

    Article  CAS  Google Scholar 

  26. Nekrasov K (2021) Diffusion of oxygen in hypostoichiometric uranium dioxide nanocrystals. A molecular dynamics simulation. Chim Techno Acta. 8(1):20218107

    Article  CAS  Google Scholar 

  27. Shang S (2022) Studying the adsorption mechanisms of nanoplastics on covalent organic frameworks via molecular dynamics simulations. J Hazard Mater 421:126796

    Article  CAS  PubMed  Google Scholar 

  28. Hollingsworth SA (2018) Molecular dynamics simulation for all. Neuron 99(6):1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thompson RB (2002) Block copolymer-directed assembly of nanoparticles: forming mesoscopically ordered hybrid materials. Macromolecules 35(3):1060–1071

    Article  CAS  Google Scholar 

  30. Mahmood A (2022) Molecular level understanding of chalcogen atom effect on chalcogen-based polymers through electrostatic potential, non-covalent interactions, excited state behaviours, and radial distribution function. Polym Chem 13(42):5993–6001

    Article  CAS  Google Scholar 

  31. Levine BG (2011) Fast analysis of molecular dynamics trajectories with graphics processing units—radial distribution function histogramming. J Comput Phys 230(9):3556–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mei L (2014) Molecular dynamics simulation of polyacrylonitrile in different solvents. Polym Mater: Sci Eng 30(04):110–114

    CAS  Google Scholar 

  33. Liu P (2017) Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations. J Chem Phys 147(8):084904

    Article  PubMed  Google Scholar 

  34. Batyrow M (2023) Size dependent change of mean square displacement in gold nanocrystals: a molecular dynamics simulation. Concurr Comput Pract Exp 35(24):7566

    Article  Google Scholar 

  35. Liu Y (2010) Molecular simulation of di-lute polyacrylamide solutions. Acta Phys -Chim Sin 26(11):2907–2914

    Article  CAS  Google Scholar 

  36. Pires JM (2012) Molecular dynamic simulations of polyacrylonitrile in ethanol and water solvents. Comput Theor Chem 995:75–78

    Article  CAS  Google Scholar 

  37. Shi S (2020) Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy 71:104629

    Article  CAS  Google Scholar 

  38. Luo X (2018) Phase separation technology based on ultrasonic standing waves: a review. Ultrason Sonochem 48:287–298

    Article  CAS  PubMed  Google Scholar 

  39. Zeng Y (2021) ZIF-8 in-situ growth on amidoximerized polyacrylonitrile beads for uranium sequestration in wastewater and seawater. J Environ Chem Eng 9(6):106490

    Article  CAS  Google Scholar 

  40. Gu H (2022) Constructing an amino-reinforced amidoxime swelling layer on a polyacrylonitrile surface for enhanced uranium adsorption from seawater. J Colloid Interface Sci 610:1015–1026

    Article  CAS  PubMed  Google Scholar 

  41. Ju P (2021) Swollen-layer constructed with polyamine on the surface of nano-polyacrylonitrile cloth used for extract uranium from seawater. Chemosphere 271:129548

    Article  CAS  PubMed  Google Scholar 

  42. **e L (2018) Study of poly(acrylamidoxime) brushes conformation with uranium adsorption by neutron reflectivity. Mater Lett 220:47–49

    Article  CAS  Google Scholar 

  43. Birchill AJ (2019) The eastern extent of seasonal iron limitation in the high latitude North Atlantic Ocean. Sci Rep 9(1):1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng S (2019) The state of arts: sources, microbial processes and ecological effects of iron in the marine environment. Adv in Earth Sci 34(5):513–522

    Google Scholar 

  45. Meng Z (2019) Effect of different salt solutions on the conformation of polyethylene oxide. Hans J Chem Eng Techno 9(1):1–9

    Article  Google Scholar 

  46. Ma C (2019) Sunlight polymerization of poly(amidoxi-me) hydrogel membrane for enhanced uranium extraction from seawater. Adv Sci 6:1900085

    Article  Google Scholar 

  47. Li W (2013) Synthesis of ami-doxime functionalized cellulose derivatives as a reducing agent and stabilizer for preparing gold nanoparticles. Polym Chem 4(8):2556

    Article  CAS  Google Scholar 

  48. Darge A (2022) Polyamidoxime-based membranes for the rapid screening of uranium isotopes in water. Anal Chim Acta 1220:339997

    Article  CAS  PubMed  Google Scholar 

  49. **ao F (2022) Colloidal templating of highly ordered porous amidoxime-functionalized hydrogel for intelligent treatment of uranium contaminated water. J Chem Eng 431:134141

    Article  CAS  Google Scholar 

  50. Zhang L (2019) Decontamination of U(VI) on graphene oxide/Al2O3 composites investigated by XRD. FT-IR XPS Tech Environ Pollut 248:332–338

    CAS  Google Scholar 

  51. Ding C (2019) Spectroscopic and theoretical investigation on efficient removal of U(VI) by amine-containing polymers. Chem Eng J 367:94–101

    Article  CAS  Google Scholar 

  52. Côté A (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170

    Article  PubMed  Google Scholar 

  53. Sun Y (2021) Anti-biofouling ultrathin poly(amidoxime) membrane for enhanced U(VI) reco-very from wastewater and seawater. ACS Appl Mater Interfaces 13(18):21272–21285

    Article  CAS  PubMed  Google Scholar 

  54. Breßler I (2015) SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions. J Appl Crystallogr 48(5):1587–1598

    Article  PubMed  PubMed Central  Google Scholar 

  55. Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr 28(6):717–728

    Article  CAS  Google Scholar 

  56. Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Crystallogr 29(2):134–146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. U2130125), Applied Basic Research Program of Science and Technology Department of Sichuan (2023NSFSC1959, 2023ZYD0027), CAEA Nuclear energy development and research project, Innovation and Development Fund of China Seawater Uranium Extraction Technology Innovation Alliance (CNNC-CXLM-202213), Experimental Technology Research Project (21syjs13) and Natural Science Foundation of Sichuan, China (2022NSFSC0284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangting Chi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Li, X., Li, Y. et al. Microscopic evolution of the conformation for polyamidoxime molecular chains under various uranium adsorption conditions. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09572-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09572-w

Keywords

Navigation