Log in

Transport and separation behavior of La(III) and Eu(III) in a plate type supported liquid membrane with DMDODGA as the carrier

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Using DMDODGA as the carrier, the transportation and separation behavior of Eu(III) and La(III) were studied using a plate-type supported liquid membrane. La(III) and Eu(III) reach their maximum transport rates at feed phase nitric acid concentrations of 2 and 4 mol/L, which are 72.41 (± 2.12)% and 77.80 (± 2.45)%; Increasing the concentration of NO3 in feed phase will promote the transport of both ions. The change of HNO3 concentration in feed phase had major effect on the separation of Eu(III)/La(III), and the co-transport of Eu(III)/La(III) was observed when the concentration of NO3 was 3 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Saik Su G, Morad N, Ismail N, Rafatullah M (2022) Developments in supported liquid membranes for treatment of metal-bearing wastewater. Sep Purif Rev 51:38–56

    Article  CAS  Google Scholar 

  2. Radioactive waste (2014) In: Herrmann H, Bucksch H (eds) Dictionary geotechnical engineering/Wörterbuch GeoTechnik: English-German/Englisch-Deutsch. Springer, Berlin, Heidelberg, pp 1070–1070

  3. Nash, K. L., & Choppin, G. R. (1997). Separations chemistry for actinide elements: recent developments and historical perspective. Sep Sci Technol 32(1–4):255–274.

    Article  CAS  Google Scholar 

  4. Oecd, Nuclear Energy A (2006) Advanced nuclear fuel cycles and radioactive waste management. Nuclear Development. OECD

  5. Herbst RS, Baron P, Nilsson M (2011) 6—Standard and advanced separation: PUREX processes for nuclear fuel reprocessing. In: Nash KL, Lumetta GJ (eds) Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Woodhead publishing series in energy. Woodhead Publishing, Delhi, pp 141–175

    Chapter  Google Scholar 

  6. Sood DD, Patil SK (1996) Chemistry of nuclear fuel reprocessing: current status. J Radioanal Nucl Chem 203:547–573

    Article  CAS  Google Scholar 

  7. Anklam TM, Dunne M, Meier WR, Powers S, Simon AJ (2011) LIFE: the case for early commercialization of fusion energy. Fusion Sci Technol 60:66–71

    Article  CAS  Google Scholar 

  8. Xu C, Chen J (2023) An overview of R&D activities on high level liquid waste partitioning at Tsinghua University, China. In: Liu C (ed) Proceedings of the 23rd Pacific basin nuclear conference, vol 2. Springer Nature, Singapore, pp 584–588

    Google Scholar 

  9. **g C, Jianchen W (2011) Overview of 30 years research on TRPO process for actinides partitioning from high level liquid waste. Prog Chem 23:1366

    Google Scholar 

  10. Morita Y, Kubota M (1985) Behavior of neptunium in chemical process of partitioning long-lived radionuclides from high-level waste. J Nucl Sci Technol 22:658–664

    Article  CAS  Google Scholar 

  11. Ansari SA, Pathak P, Mohapatra PK, Manchanda VK (2012) Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 112:1751–1772

    Article  CAS  PubMed  Google Scholar 

  12. Guoxin S, Min L, Yu C, Meilong Y, Shaohong Y (2010) Synthesis of N, N′-dimethyl-N, N′-dioctyl-3-oxadiglycolamide and its extraction properties for lanthanides. Solvent Extr Ion Exch 28:482–494

    Article  Google Scholar 

  13. Wei Z, Lu C, Zhou Y, Jiao C, Zhang M, Hou H, Gao Y, Tian G (2020) Extraction and separation performance of rhenium(VII) and uranium(VI) from nitric acid medium using N, N′-dimethyl-N, N′-dioctyldiglycolamide. J Radioanal Nucl Chem 323:875–884

    Article  CAS  Google Scholar 

  14. Ravi J, Selvan BR, Venkatesan KA, Antony MP, Srinivasan TG, Vasudeva Rao PR (2014) Radiolytic stability of di-2-ethylhexyl-dioctyl diglycolamide. Radiochim Acta 102:451–457

    Article  CAS  Google Scholar 

  15. Ravi J, Venkatesan KA, Antony MP, Srinivasan TG, Vasudeva Rao PR (2014) Feasibility of using di-dodecyl-di-octyl diglycolamide for partitioning of minor actinides from fast reactor high-level liquid waste. Solvent Extr Ion Exch 32:424–436

    Article  CAS  Google Scholar 

  16. Mahanty B, Mohapatra PK, Leoncini A, Huskens J, Verboom W (2022) Unique Eu(III) transport selectivity seen using a supported liquid membrane containing a diglycolamide dendrimer ligand. Sep Sci Technol 57:1775–1787

    Article  CAS  Google Scholar 

  17. Mahanty B, Mohapatra PK, Leoncini A, Huskens J, Verboom W (2022) Liquid-liquid extraction and supported liquid membrane transport of neptunium(IV) across a flat-sheet supported liquid membrane containing a TREN-DGA derivative. Solvent Extr Ion Exch 40:693–717

    Article  CAS  Google Scholar 

  18. Mahanty B, Verma PK, Mohapatra PK, Leoncini A, Huskens J, Verboom W (2020) Pertraction of Np(IV) and Pu(IV) across a flat sheet supported liquid membrane containing two N-pivoted tripodal diglycolamides. Sep Purif Technol 238:116418

    Article  CAS  Google Scholar 

  19. Peterson R (2019) Engineering separations unit operations for nuclear processing. CRC Press, Boca Raton

    Book  Google Scholar 

  20. Hu Y, Lu C, Chen Q, Liu Y, Zhou Y, Jiao C, Zhang M, Hou H, Gao Y, Tian G (2022) Pertraction of Nd(III) and U(VI) through flat sheet supported liquid membrane containing N, N’-dimethyl-N, N’-dioctyl-3-oxadiglcolamide as carrier. Solvent Extr Ion Exch 40:269–289

    Article  CAS  Google Scholar 

  21. Parhi PK (2013) Supported liquid membrane principle and its practices: a short review. J Chem 2013:1–11

    Article  Google Scholar 

  22. Kocherginsky NM, Yang Q, Seelam L (2007) Recent advances in supported liquid membrane technology. Sep Purif Technol 53:171–177

    Article  CAS  Google Scholar 

  23. Pabby AK, Swain B, Sonar NL, Mittal VK, Valsala TP, Ramsubramanian S, Sathe DB, Bhatt RB, Pradhan S (2022) Radioactive waste processing using membranes: state of the art technology, challenges and perspectives. Sep Purif Rev 51:143–173

    Article  CAS  Google Scholar 

  24. Maruyama T, Matsushita H, Uchida J-i, Kubota F, Kamiya N, Goto M (2004) Liquid membrane operations in a microfluidic device for selective separation of metal ions. Anal Chem 76:4495–4500

    Article  CAS  PubMed  Google Scholar 

  25. Ansari SA, Mohapatra PK, Prabhu DR, Manchanda VK (2008) Transport of lanthanides and fission products through supported liquid membranes containing N, N, N′, N′-tetraoctyl diglycolamide (TODGA) as the carrier. Desalination 232:254–261

    Article  CAS  Google Scholar 

  26. Sasaki Y, Matsumiya M, Tsuchida Y (2020) Basic research on batchwise multi-stage extractions using TODGA for Dy/Nd separation. Anal Sci 36:1303–1311

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Yu B, Davis K, King A, Dal-Cin M, Nicalek A, Du N (2022) Separation of neodymium (III) and lanthanum (III) via a flat sheet-supported liquid membrane with different extractant-acid systems. Membranes 12:1197

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li L, Davis K, King A, Dal-Cin M, Nicalek A, Yu B (2022) Efficient separation of Nd(III) and La(III) via supported liquid membrane using EHEHPA (P507) as a carrier. J Sustain Metall 8:1215–1224

    Article  Google Scholar 

  29. Liu Y, Zhao C, Liu Z, Zhou Y, Jiao C, Zhang M, Hou H, Gao Y, He H, Tian G (2020) Extraction and strip** behaviors of 14 lanthanides from nitric acid medium by N, N′-dimethyl-N, N′-dioctyl diglycolamide. J Radioanal Nucl Chem 325:409–416

    Article  CAS  Google Scholar 

  30. Mohapatra PK, Iqbal M, Raut DR, Verboom W, Huskens J, Manchanda VK (2011) Evaluation of a novel tripodal diglycolamide for actinide extraction: solvent extraction and SLM transport studies. J Membr Sci 375:141–149

    Article  CAS  Google Scholar 

  31. Panja S, Mohapatra PK, Tripathi SC, Gandhi PM, Janardan P (2012) Supported liquid membrane transport studies on Am(III), Pu(IV), U(VI) and Sr(II) using irradiated TODGA. J Hazard Mater 237–238:339–346

    Article  PubMed  Google Scholar 

  32. Panja S, Mohapatra PK, Tripathi SC, Manchanda VK (2010) Transport of thorium(IV) across a supported liquid membrane containing N, N, N′, N′-tetraoctyl-3-oxapentanediamide (TODGA) as the extractant. Sep Sci Technol 45:1112–1120

    Article  CAS  Google Scholar 

  33. Peroutka AA, Galley SS, Shafer JC (2023) Elucidating the speciation of extracted lanthanides by diglycolamides. Coord Chem Rev 482:215071

    Article  CAS  Google Scholar 

  34. Teramoto M, Sakaida Y, Fu SS, Ohnishi N, Matsuyama H, Maki T, Fukui T, Arai K (2000) An attempt for the stabilization of supported liquid membrane. Sep Purif Technol 21:137–144

    Article  CAS  Google Scholar 

  35. Visser HC, Reinhoudt DN, de Jong F (1994) Carrier-mediated transport through liquid membranes. Chem Soc Rev 23:75–81

    Article  CAS  Google Scholar 

  36. Sinharoy P, Banerjee D, Sharma JN, Kaushik CP, Shah JG, Agarwal K (2018) Separation of Sr(II) from Eu(III) across a supported liquid membrane using TEHDGA and 18-crown-6. J Radioanal Nucl Chem 317:919–923

    Article  CAS  Google Scholar 

  37. Panja S, Mohapatra PK, Tripathi SC, Manchanda VK (2011) Facilitated transport of uranium(VI) across supported liquid membranes containing T2EHDGA as the carrier extractant. J Hazard Mater 188:281–287

    Article  CAS  PubMed  Google Scholar 

  38. Ruhela R, Sharma JN, Tomar BS, Panja S, Tripathi SC, Hubli RC, Suri AK (2010) N, N, N′, N′-tetra(2-ethylhexyl) thiodiglycolamide T(2EH)TDGA: a novel ligand for the extraction of palladium from high level liquid waste (HLLW). rca Radiochim Acta 98:209–214

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Gao or Tingting Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, C., Guo, W. et al. Transport and separation behavior of La(III) and Eu(III) in a plate type supported liquid membrane with DMDODGA as the carrier. J Radioanal Nucl Chem 333, 2195–2206 (2024). https://doi.org/10.1007/s10967-024-09419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09419-4

Keywords

Navigation