Log in

Suspension polymerization method for preparing plastic scintillation microspheres

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Plastic scintillation microsphere (PSm) is a micron-sized plastic scintillator, and it is an organic scintillation material with good application prospects in the field of radioactivity analysis. However, the lack of simple industrial synthesis methods could limit bulk production of PSm with a reasonable cost. In this study, PSm materials were prepared via suspension polymerization and the repeatability of both the synthesis conditions and the radioactivity measurement performance were evaluated. Results indicated that PSm with a particle size distribution ranged around 90–200 μm can be reproducibly synthesized under certain conditions. Consistent counting efficiency for the 14C measurement in liquid samples using PSm has been obtained as long as sufficient PSm was added into the scintillation vial to completely cover the liquid volume. By comparing the spectral widths of samples with different concentrations of fluors, optimal PPO concentration of 1.5% and bis-MSB concentration of 0.015% was chosen to obtain a good light yield and a counting efficiency of up to 43.3% for 14C in water. Furthermore, it was observed that the 14C counting efficiency of PSm would be significantly affected by the quenching of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig. 6

Similar content being viewed by others

References

  1. L’Annunziata MF, Tarancón A, Bagán H, García JF (2020) Chapter 6: Liquid scintillation analysis: principles and practice*. In: L’Annunziata MF (ed) Handbook of radioactivity analysis, 4th edn. Academic Press, pp 575–801

    Chapter  Google Scholar 

  2. Hou X (2018) Liquid scintillation counting for determination of radionuclides in environmental and nuclear application. J Radioanal Nucl Chem 318:1597–1628. https://doi.org/10.1007/s10967-018-6258-6

    Article  CAS  Google Scholar 

  3. Jia G, Jia J (2012) Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology. J Environ Radioact 106:98–119. https://doi.org/10.1016/j.jenvrad.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  4. Santiago LM, Masmoudi Y, Tarancón A, Djerafi R, Bagán H, García JF, Badens E (2015) Polystyrene based sub-micron scintillating particles produced by supercritical anti-solvent precipitation. J Supercrit Fluids 103:18–27. https://doi.org/10.1016/j.supflu.2015.04.015

    Article  CAS  Google Scholar 

  5. Tarancon A, García JF, Rauret G (2002) Mixed waste reduction in radioactivity determination by using plastic scintillators. Anal Chim Acta 463:125–134. https://doi.org/10.1016/S0003-2670(02)00352-5

    Article  CAS  Google Scholar 

  6. Santiago LM, Bagán H, Tarancón A, Rauret G, Garcia JF (2013) Systematic study of particle quenching in organic scintillators. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 698:26–36. https://doi.org/10.1016/j.nima.2012.09.041

    Article  CAS  Google Scholar 

  7. Lluch E, Barrera J, Tarancón A, Bagán H, García JF (2016) Analysis of 210Pb in water samples with plastic scintillation resins. Anal Chim Acta 940:38–45. https://doi.org/10.1016/j.aca.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  8. Barrera J, Tarancón A, Bagán H, García JF (2016) A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99. Anal Chim Acta 936:259–266. https://doi.org/10.1016/j.aca.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  9. Glickman JF et al (2008) Scintillation proximity assays in high-throughput screening. Assay Drug Dev Technol 6:433–455. https://doi.org/10.1089/adt.2008.135

    Article  CAS  PubMed  Google Scholar 

  10. Tarancón A, Padró A, García JF, Rauret G (2005) Development of a radiochemical sensor, part 2: application to liquid effluents. Anal Chim Acta 538:241–249. https://doi.org/10.1016/j.aca.2005.01.038

    Article  CAS  Google Scholar 

  11. Santiago LM, Bagán H, Tarancón A, Garcia JF (2013) Synthesis of plastic scintillation microspheres: evaluation of scintillators. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 698:106–116. https://doi.org/10.1016/j.nima.2012.09.028

    Article  CAS  Google Scholar 

  12. Santiago LM, Tarancón A, Bagán H, García JF (2016) Production of polystyrene-based scintillation microspheres for the measurement of radioactivity by spray-drying. J Radioanal Nucl Chem 308:789–799. https://doi.org/10.1007/s10967-015-4561-z

    Article  CAS  Google Scholar 

  13. Bagán H, Tarancón A, Ye L, García JF (2014) Crosslinked plastic scintillators: a new detection system for radioactivity measurement in organic and aggressive media. Anal Chim Acta 852:13–19. https://doi.org/10.1016/j.aca.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  14. Erbay E, Blgç T, Karali M, Savaşçi ÖT (1992) Polystyrene suspension polymerization: the effect of polymerization parameters on particle size and distribution. Polym-Plast Technol Eng 31:589–605. https://doi.org/10.1080/03602559208017771

    Article  CAS  Google Scholar 

  15. Tseng CM, Lu YY, El-Aasser MS, Vanderhoff JW (1986) Uniform polymer particles by dispersion polymerization in alcohol. J Polym Sci Part A Polym Chem 24:2995–3007. https://doi.org/10.1002/pola.1986.080241126

    Article  CAS  Google Scholar 

  16. Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247–253. https://doi.org/10.1016/j.cplett.2009.11.024

    Article  CAS  Google Scholar 

  17. Kim J-W, Suh K-D (2000) Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology. Polymer 41:6181–6188. https://doi.org/10.1016/S0032-3861(99)00846-0

    Article  CAS  Google Scholar 

  18. Niedzwiedzki DM, Mulrow D, Sobotka LG (2022) Evaluation of the photophysical properties of two scintillators: crystalline para-terphenyl and plastic-embedded 2,5-diphenyloxazole dye (EJ-276) at room and cryogenic temperatures. J Phys Chem A 126:5273–5282. https://doi.org/10.1021/acs.jpca.2c02870

    Article  CAS  PubMed  Google Scholar 

  19. Hamel M, Lebouteiller G (2020) Attempting to prepare a plastic scintillator from a biobased polymer. J Appl Polym Sci 137:48724. https://doi.org/10.1002/app.48724

    Article  CAS  Google Scholar 

  20. Klitting O, Sguerra F, Bertrand GHV, Villemot V, Hamel M (2021) Preparation and characterization of cross-linked plastic scintillators. Polymer 213:123214. https://doi.org/10.1016/j.polymer.2020.123214

    Article  CAS  Google Scholar 

  21. Brooks FD (1979) Development of organic scintillators. Nucl Instrum Methods 162:477–505. https://doi.org/10.1016/0029-554X(79)90729-8

    Article  CAS  Google Scholar 

  22. Tarancón A, Bagán H, García JF (2017) Plastic scintillators and related analytical procedures for radionuclide analysis. J Radioanal Nucl Chem 314:555–572. https://doi.org/10.1007/s10967-017-5494-5

    Article  CAS  Google Scholar 

  23. Paff MG, Clarke SD, Pozzi SA (2016) Organic liquid scintillation detector shape and volume impact on radiation portal monitors. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 825:31–39. https://doi.org/10.1016/j.nima.2016.03.102

    Article  CAS  Google Scholar 

  24. Yang Y, Zhang H, Wang Y, Ma Y, Dai X, Ai Y, Huang Y (2021) Influence of various parameters on TDCR Cerenkov counting technique. J Radioanal Nucl Chem 329:499–509. https://doi.org/10.1007/s10967-021-07853-2

    Article  CAS  Google Scholar 

  25. Bagán H, Hartvig S, Tarancón A, Rauret G, García JF (2009) Plastic vs. liquid scintillation for 14C radiotracers determination in high salt matrices. Anal Chim Acta 631:229–236. https://doi.org/10.1016/j.aca.2008.10.036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by the Youth Fund of China Institute for Radiation Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ongxin Dai.

Ethics declarations

Conflict of interest

All authors have no conflict of interests/competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Song, L., Wang, L. et al. Suspension polymerization method for preparing plastic scintillation microspheres. J Radioanal Nucl Chem 332, 4953–4961 (2023). https://doi.org/10.1007/s10967-023-09159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09159-x

Keywords

Navigation