Log in

Research on the uranium (VI) reduction by free radicals using UV/formic acid process

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study investigated the use of ultraviolet (UV) light irradiation for the activation of formic acid (FA) to reduce U(VI) in aqueous solutions. The results demonstrated that under UV radiation, FA exhibited a higher U(VI) reduction efficiency than other organic acids, and up to 70% of U(VI) in aqueous solutions was successfully removed. Electron spin resonance and methanol quenching experiments confirmed that U(VI) reduction in the UV/FA process was due to the electron transfer facilitated by FA (HCOOH) and CO2•−. This catalyst-free UV/FA process holds promise for the reduction of U(VI) in leaking water from uranium tailing ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu B, Peng T, Sun H, Yue H (2017) Release behavior of uranium in uranium mill tailings under environmental conditions. J Environ Radioact 171:160–168

    Article  CAS  PubMed  Google Scholar 

  2. Markich SJ (2002) Uranium speciation and bioavailability in aquatic systems: an overview. Sci World J 2:707–729

    Article  CAS  Google Scholar 

  3. O’Loughlin EJ, Kelly SD, Cook RE, Csencsits R, Kemner KM (2003) Reduction of uranium (VI) by mixed iron (II)/iron (III) hydroxide (green rust): formation of UO2 nanoparticles. Environ Sci Technol 37(4):721–727

    Article  CAS  PubMed  Google Scholar 

  4. Augustine S, Gagnaire B, Adam-Guillermin C, Kooijman S (2012) Effects of uranium on the metabolism of zebrafish, Danio rerio. Aquat Toxicol 118–119:9–26

    Article  PubMed  Google Scholar 

  5. Regulation NPDW (1991) Radionuclides, advanced notice of proposed rulemaking. Federal Regist 56:141–142

    Google Scholar 

  6. Asiabi H, Yamini Y, Shamsayei M (2018) Highly efficient capture and recovery of uranium by reusable layered double hydroxide intercalated with 2-mercaptoethanesulfonate. Chem Eng J 337:609–615

    Article  CAS  Google Scholar 

  7. Wang X, Liu Q, Liu J, Chen R, Zhang H, Li R, Li Z, Wang J (2017) 3D self-assembly polyethyleneimine modified graphene oxide hydrogel for the extraction of uranium from aqueous solution. Appl Surf Sci 426:1063–1074

    Article  CAS  Google Scholar 

  8. De Decker J, Folens K, De Clercq J, Meledina M, Van Tendeloo G, Du Laing G, Van Der Voort P (2017) Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption. J Hazard Mater 335:1–9

    Article  PubMed  Google Scholar 

  9. Ghasemi Torkabad M, Keshtkar AR, Safdari SJ (2017) Comparison of polyethersulfone and polyamide nanofiltration membranes for uranium removal from aqueous solution. Prog Nucl Energy 94:93–100

    Article  CAS  Google Scholar 

  10. Reinoso-Maset E, Ly J (2016) Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model. J Environ Radioact 157:136–148

    Article  CAS  PubMed  Google Scholar 

  11. Orrego P, Hernández J, Reyes A (2019) Uranium and molybdenum recovery from copper leaching solutions using ion exchange. Hydrometallurgy 184:116–122

    Article  CAS  Google Scholar 

  12. Liu X, Liu G, You S (2021) Effective in-situ reduction of Cr(VI) from leather wastewater by advanced reduction process based on CO2•- with visible-light photocatalyst. Chemosphere 263:127898

    Article  CAS  PubMed  Google Scholar 

  13. Li X, Ma J, Liu G, Fang J, Yue S, Guan Y, Chen L, Liu X (2012) Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process. Environ Sci Technol 46:7342–7349

    Article  CAS  PubMed  Google Scholar 

  14. Yu H, Nie E, Xu J, Yan S, Cooper WJ, Song W (2013) Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments. Water Res 47:1909–1918

    Article  CAS  PubMed  Google Scholar 

  15. Jeong J, Song W, Cooper WJ, Jung J, Greaves J (2010) Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 78:533–540

    Article  CAS  PubMed  Google Scholar 

  16. Flyunt R, Schuchmann MN, Sonntag C (2015) A common carbanion intermediate in the recombination and proton-catalysed disproportionation of the carboxyl radical anion, CO2•-, in aqueous solution. Chem Eur J 7:796–799

    Article  Google Scholar 

  17. DetlefSchröder CA, HelmutSchwarz J, Jeremy NH (1999) On the formation of the carbon dioxide anion radical CO2•- in the gas phase. Int J Mass Spectrom 185:25–35

    Google Scholar 

  18. Rosso JA, Bertolotti SG, Braun AM, Mártire DO, Gonzalez MC (2001) Reactions of carbon dioxide radical anion with substituted benzenes. J Phys Org Chem 14:300–309

    Article  CAS  Google Scholar 

  19. **e B, Shan C, Xu Z, Li X, Zhang X, Chen J, Pan B (2017) One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. Chem Eng J 308:791–797

    Article  CAS  Google Scholar 

  20. Liu X, Zhong J, Fang L, Wang L, Ye M, Shao Y, Li J, Zhang T (2016) Trichloroacetic acid reduction by an advanced reduction process based on carboxyl anion radical. Chem Eng J 303:56–63

    Article  CAS  Google Scholar 

  21. Yazdanbakhsh A, Eslami A, Mahdipour F, Ghanbari F, Ghasemi SM, Atamaleki A, Lin KYA (2021) Dye degradation in aqueous solution by dithionite/UV-C advanced reduction process (ARP): kinetic study, dechlorination, degradation pathway and mechanism. J Photochem Photobiol A Chem 407:112995

    Article  CAS  Google Scholar 

  22. Mora VC, Rosso JA, Carrillo Le Roux G, Martire DO, Gonzalez MC (2009) Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants. Chemosphere 75:1405–1409

    Article  CAS  PubMed  Google Scholar 

  23. Gu X, Lu S, Fu X, Qiu Z, Sui Q, Guo X (2017) Carbon dioxide radical anion-based UV/S2O82−/HCOOH reductive process for carbon tetrachloride degradation in aqueous solution. Sep Purif Technol 172:211–216

    Article  CAS  Google Scholar 

  24. Arslanoğlu H, Altundoğan HS, Tümen F (2021) Photocatalytic reduction of Cr(VI) from aqueous solutions with formic acid in the presence of bauxite: kinetics and mechanism. Trans Indian Inst Met 74:3075–3084

    Article  Google Scholar 

  25. Harbour JR, Hair ML (1979) Spin trap** of the CO2•- radical in aqueous medium. Can J Chem 57:1150–1152

    Article  CAS  Google Scholar 

  26. Adams GE (1962) Radiolysis and photolysis of aqueous formic acid carbon monoxide formation. J Am Chem Soc 84:3994

    Article  CAS  Google Scholar 

  27. Wang N, Zhu L, Deng K, She Y, Yu Y, Tang H (2010) Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids. Appl Catal B 95:400–407

    Article  CAS  Google Scholar 

  28. Wang X, Rui Z, Ji H (2020) DFT study of formaldehyde oxidation on silver cluster by active oxygen and hydroxyl groups: Mechanism comparison and synergistic effect. Catal Today 347:124–133

    Article  CAS  Google Scholar 

  29. Ma R, Yin L, Li L, Zhang S, Wen T, Zhang C, Wang X, Chen Z, Hayat T, Wang X (2018) Comparative Investigation of Fe2O3 and Fe1–xS nanostructures for uranium decontamination. ACS Appl Nano Mater 1:5543–5552

    Article  CAS  Google Scholar 

  30. Schwarz HA, Dodson RW (2002) Reduction potentials of CO2•- and the alcohol radicals. J Phys Chem 93:409–414

    Article  Google Scholar 

  31. Draganić Z, Dragani I, Navarro-Gonzáles R, Sehested K, Albarrán-Sanchez M (1991) Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range. Radiat Phys Chem 38:317–321

    Google Scholar 

  32. Liang C, Su H-W (2009) Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind Eng Chem Res 48:5558–5562

    Article  CAS  Google Scholar 

  33. Golub D, Cohen H, Meyerstein D (1985) Kinetics and mechanism of single electron oxidations of the tervalent uranium ion, U 3+(aq), by free radicals in aqueous solutions. J Chem Soc Dalton Transact 4:641–644

    Article  Google Scholar 

  34. Yu D (1994) Radicals and ions of formic and acetic acids: an Ab initio study of the structures and gas and solution phase thermochemistry. Org Biomol Chem 1:2207–2215

    Google Scholar 

  35. Lucks C, Rossberg A, Tsushima S, Foerstendorf H, Fahmy K, Bernhard G (2013) Formic acid interaction with the uranyl(VI) ion: structural and photochemical characterization. Dalton Trans 42:13584–13589

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by and the Key projects of key R & D plan of Jiangxi Province (20212BBG71011), the National Natural Science Foundation of China (21966004, 22006011, 52064001) and the Natural Science Foundation of Jiangxi, China (20224BAB203028, 20202ACBL213006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yadan Guo or Keng Xuan.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Guo, Y., Wang, J. et al. Research on the uranium (VI) reduction by free radicals using UV/formic acid process. J Radioanal Nucl Chem 332, 4441–4447 (2023). https://doi.org/10.1007/s10967-023-09138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09138-2

Keywords

Navigation