Log in

Different behavior of uranium(VI) on two clay minerals: montmorillonite and kaolinite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study investigated the feasibility of using montmorillonite and kaolinite to remediate uranium-contaminated groundwater. The results showed that the two minerals achieved U(VI) removal rates of 78.68% and 69.89%, respectively. The maximum saturation adsorption amounts were 3.78 × 10–5 mol g−1 and 3.85 × 10–5 mol g−1, respectively. The Langmuir model and pseudo-second-order kinetics can describe the adsorption process of kaolinite on U(VI). The adsorption process of montmorillonite on U(VI) was well-fitted by Freundlich, and pseudo-second-order models. Thermodynamic parameters indicated that the two minerals' adsorption of U(VI) was a heat-absorbing reaction. The results of SEM–EDS, FT-IR revealed that the adsorption of U(VI) by the two minerals was mostly an ion-exchange reaction, and various functional groups were involved in the adsorption process. XPS results showed valence changes accompanied by kaolinite adsorption of U(VI). Montmorillonite and kaolinite have some differences in the adsorption process of U(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Minas F, Chandravanshi BS, Leta S (2017) Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia. Chem Int 3(4):291–305

    CAS  Google Scholar 

  2. Kharecha PA, Hansen JE (2013) Prevented mortality and greenhouse gas emissions from historical and projected nuclear power. Environ Sci Technol 47:4889–4895

    Article  CAS  PubMed  Google Scholar 

  3. Xun Y, Xuegang L (2015) Radionuclides distribution, properties, and microbial diversity of soils in uranium mill tailings from southeastern China. J Environ Radioact 139:85–90

    Article  Google Scholar 

  4. Sun Z, Chen D, Chen B, Kong L, Su M (2018) Enhanced uranium(VI) adsorption by chitosan 394 modified phosphate rock. Colloid Surf A 547:141–147

    Article  CAS  Google Scholar 

  5. Chen S, Wei X, Liu J, Sun Z, Chen G, Yang M, Liu Y, Wang D, Ma C, Kong D (2022) Weak acid leaching of uranium ore from a high carbonate uranium deposit. J Radioanal Nucl Chem Int J Deal Asp Appl Nucl Chem 6:331

    Google Scholar 

  6. Orozco I, Romero M, Lara R, Bazan V (2018) Precipitation of uranium from alkaline liqueurs. Matéria 23:3336

    Google Scholar 

  7. Rong L, Zeming S, Yun H, Kailiang Z, Lvhang Y (2019) Uranium sorption onto mullite: characteristics of isotherms, kinetics and thermodynamics. J Earth Syst Sci 128(7):176–179

    Article  Google Scholar 

  8. Sar SK, Diwan V, Biswas S, Singh S, Sahu M, **dal MK, Arora A (2018) Study of uranium level in groundwater of Balod district of Chhattisgarh state, India and assessment of health risk. Hum Ecol Risk Assess 24:691–698

    Article  CAS  Google Scholar 

  9. Yang H, Luo X, Ding H, Zhang X (2018) Adsorption of U(VI) by elodea nuttallii: equilibrium, kinetic and mechanism analysis. J Radioanal Nucl Chem 319(4):227

    Google Scholar 

  10. Hamutoko JT, Mapani BS, Ellmies R, Bittner A, Kuells C (2014) A fngerprinting method for the identifcation of uranium sources in alluvial aquifers: an example from the Khan and Swakop Rivers, Namibia. Phys Chem Earth 72–75:34–42

    Article  Google Scholar 

  11. Nada FT, Laith AN, Enas MY (2014) Uranium concentration and its associated health hazards in drinking water of Nineveh Province (Iraq). World Appl Sci J 31(11):1938–1944

    CAS  Google Scholar 

  12. Borch T, Roche N, Johnson TE (2012) Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine. J Environ Monit JEM 14(7):1814–1823

    Article  CAS  PubMed  Google Scholar 

  13. Obiri-Nyarko F, Grajales-Mesa SJ, Malina G (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111:243–259

    Article  CAS  PubMed  Google Scholar 

  14. LIZhang JY (2012) Remediation technology for the uranium contaminated environment: a review. Proc Environ Sci 13:1609–1615

    Article  Google Scholar 

  15. MaZhang JY (2006) Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water. J Hazard Mater 136(3):982–988

    Article  Google Scholar 

  16. Ma L (2014) Als-pill ared montmorillonite modifed by cationic and zwitterionic surfactants: a comparative study. Appl Clay Sci 101:327–334

    Article  CAS  Google Scholar 

  17. Diwan V, Sar SK, Biswas S, Lalwani R (2020) Adsorptive extraction of uranium(VI) from aqueous phase by dolomite. Groundw Sustain Dev 11:100424

    Article  Google Scholar 

  18. Kornilovych B, Kovalchuk L, Tobilko V, Ubaldini S (2020) Uranium removal from groundwater and waste water using clay-supported nanoscale zero-valent iron. Metals 10:111–116

    Article  Google Scholar 

  19. **ong H, JieminZhang T, WenzhongHuang C, YulingHu B (2021) Unexpected ultrafast elimination of uranium and europium from aqueous solutions with magnetic bio-CaCO3. J Mol Liquids 322(1):114986

    Article  CAS  Google Scholar 

  20. Khan S, Anjum R, Bilal M (2021) Revealing chemical speciation behaviors in aqueous solutions for U(VI) and europium (III) adsorption on zeolite. Environ Technol Innov 22:101503

    Article  CAS  Google Scholar 

  21. Gladysz-Plaska A (2019) Adsorption properties of sepiolite in relation to Uranium and Lanthanide lons. Imerals 5:20–31

    Google Scholar 

  22. Bergaya F, Lagaly G (2006) Chapter 1 general introduction: clays, clay minerals, and clay science. Dev Clay 1(05):1–18

    CAS  Google Scholar 

  23. Zhu R, Chen Q, Zhou Q, ** Y, Zhu J, He H (2016) Adsorbents based on montmorillonite for contaminant removal from water: a review. Appl Clay Sci 123:239–258

    Article  CAS  Google Scholar 

  24. Kralik M (2014) Adsorption, chemisorption, and catalysis. Chemicke Zvesti 68(12):1625–1638

    CAS  Google Scholar 

  25. Zhang N, Lin LS, Gang DC (2008) Adsorptive selenite removal from water using iron-coated GAC adsorbents. Water Res 42:3809–3816

    Article  CAS  PubMed  Google Scholar 

  26. Liu B, Sun H, Peng T, Duan T (2019) Transport and transformation of uranium and heavy metals from uranium tailings under simulated rain at different pH. Environ Chem Lett 18:10

    Google Scholar 

  27. Wang X (2016) Study on the adsorption behavior of Th(IV) and U(VI) on two different illites[D]. Lanzhou University

    Google Scholar 

  28. Grim RE (1953) Clay mineralogy. McGraw-Hill, New York

    Book  Google Scholar 

  29. Majd MM, Kordzadeh-Kermani V, Ghalandari V, Askari A, Sillanp M (2022) Adsorption isotherm models: a comprehensive and systematic review (20102020). Sci Total Environ 812:151334–152338

    Article  Google Scholar 

  30. Kapnisti M, Noli F, Misaelides P, Vourlias G, Karfaridis D, Hatzidimitriou A (2018) Enhanced sorption capacities for lead and uranium using titanium phosphates; sorption, kinetics, equilibrium studies and mechanism implication. Chem Eng J 342:184–195

    Article  CAS  Google Scholar 

  31. Yang C, Zhong Y, Li L, Ren X, Sun Y, Niu D, Liu Y, Yin M, Zhang D (2018) Lead and uranium sorption characteristics on hydrothermal synthesized delta manganese dioxide. J Radioanal Nucl Chem Int J Deal Aspect Appl Nucl Chem 317(3):1399–1408

    Article  CAS  Google Scholar 

  32. Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 15(390):122156

    Article  Google Scholar 

  33. Noreen S, Kausar A, Zaman Q, Bhatti H, Nawaz I (2016) Efficient remediation of zr(IV) using citrus peel waste biomass: kinetic, equilibrium and thermodynamic studies. Ecol Eng J Ecotechnol 95:216–228

    Article  Google Scholar 

  34. Ali SI, Lalji SM, Awan Z, Hashmi S, Khan G, Asad M (2022) Comprehensive performance analysis of kinetic models used to estimate asphaltene adsorption kinetics on nanoparticles. Chem Papers 77:1–15

    Google Scholar 

  35. Lebedeva OV, Sipkina EI et al (2016) Adsorption of Platinum(IV) by a composite based on silicon dioxide and copolymer of 4-Vinylpyridine and 2-Hydroxyethylmethacrylate. Protect Metals Phys Chem Surf 53(2017):80–84

    Google Scholar 

  36. Cheira MF, Mira HI, Sakr AK, Mohamed SA (2019) Adsorption of U(VI)from acid solution on a low-cost sorbent: equilibrium, kinetic, and thermodynamic assessments. Nucl Technol Engl 30(10):18

    Google Scholar 

  37. Meng F, Yuan G, Larson SL, Ballard JH, Han FX (2019) Kinetics and thermodynamics of uranium (VI) adsorption onto humic acid derived from leonardite. Int J Environ Res Public Health 16(9):1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tseng KNT, Kampf JW, Szymczak NK (2015) On the mechanism of n,n,n-amide ruthenium(II) hydride mediated acceptorless alcohol dehydrogenation: inner-sphere β-h elimination vs. outer-sphere bifunctional metal-ligand cooperativity. Acs Catal, 150810145618005

  39. Gado MA, Atia BM, Hagag MS (2020) Kinetics and thermodynamics of uranium adsorption using impregnated magnetic graphene oxide. Iran J Chem Chem Eng Int Engl Edn 39:225

    CAS  Google Scholar 

  40. Elhefnawy OA, Elabd AA (2017) Optimization of uranyl ions removal from aqueous solution by natural and modified kaolinites. Radiochim Acta 105:609

    Article  CAS  Google Scholar 

  41. Li JH, Liu WG, Zhang ZM, Li HN, Jiang QF, Wang YC, Tang RJ, Xu B, Guo RH, Su XB, Hua R (2022) Adsorption of uranium on amino functionalized acrylonitrile anion exchange resin. J Radioanal Nucl Chem 331(12):5771–5779

    Article  CAS  Google Scholar 

  42. Peng TQ, Wang YF, Xu YF, Liu ZC (2023) Synthesis, characterization and uranium (VI) adsorption mechanism of novel adsorption material poly(tetraethylenepentamine-trimesoyl chloride). J Radioanal Nucl Chem 332(2):409–422

    Article  CAS  Google Scholar 

  43. Vahur S et al (2021) Quantitative mineralogical analysis of clay-containing materials using atr-ft-ir spectroscopy with pls method. Anal Bioanal Chem 26:6535

    Article  Google Scholar 

  44. Zhu M, Liu L, Feng J, Dong H, Zhang C, Ma F, Wang Q (2021) Efficient uranium adsorption by amidoximized porous polyacrylonitrile with hierarchical pore structure prepared by freeze-extraction. J Mol Liquids 328:115304

    Article  CAS  Google Scholar 

  45. **g C, Li Q, Tang Z, Xu J, Li Y (2019) Removal of soluble uranium by Illite supported nanoscale zero-valent iron: electron transfer processes and incorporation mechanisms. J Radioanal Nucl Chem 323:2016

    Google Scholar 

  46. Peng TQ, Wang YF, Xu YF, Liu ZC (2023) Synthesis, characterization and uranium (VI) adsorption mechanism of novel adsorption material poly(tetraethylenepentamine-trimesoyl chloride). J Radioanal Nucl Chem 332:1–14

    Article  Google Scholar 

  47. Zhou W, Wang J, He J, Yang X, Liu C (2019) Adsorption of U(VI) on montmorillonite in the presence of ethylenediaminetetraacetic acid. Colloids Surf A 583:123929

    Article  CAS  Google Scholar 

  48. Senol ZM, Keskin ZS, Ozer A, Simsek S (2022) Application of kaolinite-based composite as an adsorbent for removal of uranyl ions from aqueous solution: kinetics and equilibrium study. J Radioanal Nucl Chem Int J Deal All Aspect Appl Nucl Chem 1:331

    Google Scholar 

  49. Hagag MS, Esmaeel SMA, Salem F, Ali AH, Zaki SA (2022) Thermal activation of kaolinite titanium hydroxide composite for uranium adsorption from aqueous solutions. Int J Environ Sci Technol 3:1–12

    Google Scholar 

  50. Geng R, Yuan L, Shi L, Qiang S, Li Y, Liang J, Li P, Zheng G, Fan Q (2022) New insights into the sorption of U(VI) on kaolinite and illite in the presence of aspergillus niger. Chemosphere 288:132497

    Article  CAS  PubMed  Google Scholar 

  51. Wu J, Zheng Z, Zhu K, **ang C, Wang J, Liu J (2022) Adsorption performance and mechanism of g-c3n4/uio-66 composite for u(vi) from aqueous solution. J Radioanal Nucl Chem 331(1):469–481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are extremely thankful to the anonymous reviewers that work in this paper.

Funding

National Natural Science Foundation of China (No. 42272301). Open Fund Project of State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (No.2020NRE18). Foundation for Educational Commission of Jiangxi Province of China (No. GJJ200720). Open Fund of National Defense Key Discipline Laboratory of Radioactive Geology and Exploration Technology (No. 2020RGET08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bai Gao or Wenjie Ma.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Gao, B., Ma, W. et al. Different behavior of uranium(VI) on two clay minerals: montmorillonite and kaolinite. J Radioanal Nucl Chem 332, 4029–4046 (2023). https://doi.org/10.1007/s10967-023-09119-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09119-5

Keywords

Navigation