Log in

Radioactive wastes from near-surface storage facility of uranium conversion production

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radioactive wastes (RW) of the near-surface storage facility of the Chepetsky Mechanical Plant SC (Glazov, Udmurt Republic, Russia) uranium refinery, which was operated from 1951 to 1980, were studied. It was determined the first 2–3 m of waste mainly consist of rock-forming minerals: SiO2, various aluminosilicates, feldspars, and zeolites. Wastes occurring after 3 m of depth are represented by calcium compounds: carbonate, sulfate, fluoride. The content of uranium in the RW varies in a wide range from 0.001 to 0.5 wt%. The specific activity of most wastes is determined by 226Ra and raised with increasing depth from 0.05 to 70 kBq kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beaumais A, Mangeret A, Suhard D, Blanchart P, Neji M, Cazala C, Gourgiotis A (2022) Combined U-Pb isotopic signatures of U mill tailings from France and Gabon: a new potential tracer to assess their fingerprint on the environment. J Hazard Mater 430:128484. https://doi.org/10.1016/j.jhazmat.2022.128484

    Article  CAS  PubMed  Google Scholar 

  2. Ballini M, Chautard C, Nos J, Phrommavanh V, Beaucaire C, Besancon C, Boizard A, Cathelineau M, Peiffert C, Vercouter T, Vors E, Descostes M (2020) A multi-scalar study of the long-term reactivity of uranium mill tailings from Bellezane site (France). J Environ Radioact 218:106223. https://doi.org/10.1016/j.jenvrad.2020.106223

    Article  CAS  PubMed  Google Scholar 

  3. Štrok M, Smodiš B (2013) Partitioning of natural radionuclides in sediments around a former uranium mine and mill. J Radioanal Nucl Chem 297:201–207. https://doi.org/10.1007/s10967-012-2364-z

    Article  CAS  Google Scholar 

  4. Srivastava RR, Pathak P, Perween M (2020) Environmental and Health Impact due to Uranium Mining. In: Gupta DK, Walther C (eds) Uranium in plants and the Environment. Springer International Publishing, Cham, pp 69–89. https://doi.org/10.1007/978-3-030-14961-1_3

    Chapter  Google Scholar 

  5. Othmane G, Allard T, Morin G, Selo M, Brest J, Llorens I, Chen N, Bargar JR, Fayek M, Calas G (2013) Uranium association with iron-bearing phases in mill tailings from Gunnar, Canada. Environ Sci Technol 47:12695–12702. https://doi.org/10.1021/es401437y

    Article  CAS  PubMed  Google Scholar 

  6. Lottermoser BG, Ashley PM (2005) Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia. J Geochem Explor 85:119–137. https://doi.org/10.1016/j.gexplo.2005.01.001

    Article  CAS  Google Scholar 

  7. Harries J, Levins D, Ring B, Zuk W (1997) Management of waste from uranium mining and milling in Australia. Nucl Eng Des 176:15–21. https://doi.org/10.1016/S0029-5493(96)01337-4

    Article  CAS  Google Scholar 

  8. Roche P, Thuillier B, Laponche B, Goldstick M, Swahn J, Ban H, Alvarez R (2018) The global crisis of nuclear waste. Greenpeace, France

    Google Scholar 

  9. Lauf D, Buchheister B (2019) Cleaning up America’s Nuclear Weapons Complex: 2019 update for governors. National Governors Accotiations, Washinston

    Google Scholar 

  10. Kumar P, Kumar B, Singh D (2022) Hazardous Waste Management. Elsevier, Netherlands. https://doi.org/10.1016/B978-0-12-824344-2.00004-5

    Book  Google Scholar 

  11. Khan WS, Asmatulu E, Uddin MN, Asmatulu R (2022) Treatment of radioactive waste. Recyc Reus Eng Mat 275–294. https://doi.org/10.1016/B978-0-12-822461-8.00009-7

  12. Adeola AO, Iwuozor KO, Akpomie KG, Adegoke KA, Oyedotun KO, Ighalo JO, Amaku JF, Olisah C, Conradie J (2022) Advances in the management of radioactive wastes and radionuclide contamination in environmental compartments: a review. Environ Geochem Health. https://doi.org/10.1007/s10653-022-01378-7

    Article  PubMed  Google Scholar 

  13. Linge I (2015) Special radioactive wastes. Ltd SAM Poligrafist, Moscow. (in Russian)

    Google Scholar 

  14. Strok M, Smodis B (2010) Fractionation of natural radionuclides in soils from the vicinity of a former uranium mine Zirovski vrh, Slovenia. J Environ Radioact 101:22–28. https://doi.org/10.1016/j.jenvrad.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  15. Liu B, Peng T, Sun H, Yue H (2017) Release behavior of uranium in uranium mill tailings under environmental conditions. J Environ Radioact 171:160–168. https://doi.org/10.1016/j.jenvrad.2017.02.016

    Article  CAS  PubMed  Google Scholar 

  16. Yin M, Sun J, Chen Y, Wang J, Shang J, Belshaw N, Shen C, Liu J, Li H, Linghu W, **ao T, Dong X, Song G, **ao E, Chen D (2019) Mechanism of uranium release from uranium mill tailings under long-term exposure to simulated acid rain: geochemical evidence and environmental implication. Environ Pollut 244:174–181. https://doi.org/10.1016/j.envpol.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  17. Li M, Gao F-y, Zhang X, Lv S-y, Huang J, Wu X, Fang Q (2020) Recovery of uranium from low-grade tailings by electro-assisted leaching. J Clean Prod 271:122639. https://doi.org/10.1016/j.jclepro.2020.122639

    Article  CAS  Google Scholar 

  18. Boekhout F, Gérard M, Kanzari A, Michel A, Déjeant A, Galoisy L, Calas G, Descostes M (2015) Uranium migration and retention during weathering of a granitic waste rock pile. Appl Geochem 58:123–135. https://doi.org/10.1016/j.apgeochem.2015.02.012

    Article  CAS  Google Scholar 

  19. Sharma RK, Putirka KD, Stone JJ (2016) Stream sediment geochemistry of the upper Cheyenne River watershed within the abandoned uranium mining region of the southern Black Hills, South Dakota, USA. Environ Earth Sci 75:823. https://doi.org/10.1007/s12665-016-5522-8

    Article  CAS  Google Scholar 

  20. Fuhrmann M, Benson CH, Likos WJ, Stefani N, Michaud A, Waugh WJ, Williams MM (2021) Radon fluxes at four uranium mill tailings disposal sites after about 20 years of service. J Environ Radioact 237:106719. https://doi.org/10.1016/j.jenvrad.2021.106719

    Article  CAS  PubMed  Google Scholar 

  21. Yin M, Sun J, He H, Liu J, Zhong Q, Zeng Q, Huang X, Wang J, Wu Y, Chen D (2021) Uranium re-adsorption on uranium mill tailings and environmental implications. J Hazard Mater 416:126153. https://doi.org/10.1016/j.jhazmat.2021.126153

    Article  CAS  PubMed  Google Scholar 

  22. Cuvier A, Pourcelot L, Probst A, Prunier J, Le Roux G (2016) Trace elements and pb isotopes in soils and sediments impacted by uranium mining. Sci Total Environ 566–567:238–249. https://doi.org/10.1016/j.scitotenv.2016.04.213

    Article  CAS  PubMed  Google Scholar 

  23. Neves O, Matias MJ (2008) Assessment of groundwater quality and contamination problems ascribed to an abandoned uranium mine (Cunha Baixa region, Central Portugal). Environ Geol 53:1799–1810. https://doi.org/10.1007/s00254-007-0785-8

    Article  CAS  Google Scholar 

  24. Hancock GR (2021) A method for assessing the long-term integrity of tailings dams. Sci Total Environ 779:146083. https://doi.org/10.1016/j.scitotenv.2021.146083

    Article  CAS  PubMed  Google Scholar 

  25. Rana NM, Ghahramani N, Evans SG, McDougall S, Small A, Take WA (2021) Catastrophic mass flows resulting from tailings impoundment failures. Eng Geol 292:106262. https://doi.org/10.1016/j.enggeo.2021.106262

    Article  Google Scholar 

  26. Yang S, Zhang X, Wu X, Li M, Zhang L, Peng Y, Huang Q, Tan W (2019) Understanding the solid phase chemical fractionation of uranium in soil profile near a hydrometallurgical factory. Chemosphere 236:124392. https://doi.org/10.1016/j.chemosphere.2019.124392

    Article  CAS  PubMed  Google Scholar 

  27. Pan N, Tang J, Hou D, Lei H, Zhou D, Ding J (2021) Enhanced uranium uptake from acidic media achieved on a novel iron phosphate adsorbent. Chem Eng J 423:130267. https://doi.org/10.1016/j.cej.2021.130267

    Article  CAS  Google Scholar 

  28. Mudd GM (2014) The future of yellowcake: aglobal assessment of uranium resoures and mining. Sci Tot Environ 472:590–607. https://doi.org/10.1016/j.scitotenv.2013.11.070

    Article  CAS  Google Scholar 

  29. Edwards CR, Oliver AJ (2000) Uranium processing: a review of current methods and technology. JOM 52:12–20. https://doi.org/10.1007/s11837-000-0181-2

    Article  CAS  Google Scholar 

  30. Morrs LR, Edelstein NM, Fuger J (2010) The Chemistry of the actinide and transactinide elements. Springer, Dordrecht

    Google Scholar 

  31. Morrell JS, Jackson MJ (2013) Uranium Processing and Properties. Springer, New York, Heidelberg

    Book  Google Scholar 

  32. Sen S, Murthy TKS (1980) Production of yellowcake and uranium fliorides. IAEA, Vienna

    Google Scholar 

  33. Wilson PD (1996) The Nuclear fuel cycle from Ore to Wastes. Oxford University Press, New York

    Google Scholar 

  34. Smirnov AL, Skripchenko SYu, Rychkov VN, Shtutsa MG, Syrtsov SYu, Polyanskiy AI, Pastukhov AM (2014) Processing of spillage solutions of uranium tetrafluoride pruduction. ChemChemTech 57:82–86

    CAS  Google Scholar 

  35. Shtoutsa MG, Filippov VB, Medvedeva ML, Yershov BG (2003) Processing of industrial wastewater. Ecol Ind Russia 5:11–14

    Google Scholar 

  36. Semenishchev VS, Tomashova LA, Titova SM (2021) The study of radium and polonium sorption by a thin-layer MnO2-CTA sorbent. J Radioanal Nucl Chem 327:997–1003. https://doi.org/10.1007/s10967-020-07576-w

    Article  CAS  Google Scholar 

  37. Frostick A, Bollhofer A, Parry D, Munksgaard N, Evans K (2008) Radioactive and radiogenic isotopes in sediments from Cooper Creek, Western Arnhem Land. J Environ Radioact 99:468–482. https://doi.org/10.1016/j.jenvrad.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  38. Tissot FLH, Dauphas N (2015) Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia. Geochim Cosmochim Acta 167:113–143. https://doi.org/10.1016/j.gca.2015.06.034

    Article  CAS  Google Scholar 

  39. Frostick A, Bollhofer A, Parry D (2011) A study of radionuclides, metals and stable lead isotope ratios in sediments and soils in the vicinity of natural U-mineralisation areas in the Northern Territory. J Environ Radioact 102:911–918. https://doi.org/10.1016/j.jenvrad.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  40. Nagar MS, Morsy WM, Bayoumi MB, Shalan AS (2021) Potentiality of caro’s acid in leaching of uranium from Abu-Rusheid mylonitic gneiss rocks, South Eastern Desert. Eg Results Mater 11:100214. https://doi.org/10.1016/j.rinma.2021.100214

    Article  CAS  Google Scholar 

  41. Sole KC, Cole PM, Feather AM, Kotze MH (2011) Solvent extraction and Ion Exchange Applications in Africa’s Resurging Uranium Industry: a review. Solvent Extr Ion Exch 29:868–899. https://doi.org/10.1080/07366299.2011.581101

    Article  CAS  Google Scholar 

  42. Gilligan R, Nikoloski AN (2015) The extraction of uranium from brannerite – a literature review. Miner Eng 71:34–48. https://doi.org/10.1016/j.mineng.2014.10.007

    Article  CAS  Google Scholar 

  43. Zhao QH, Zhao XB, Zheng YL, Li JC, He L, He JL, Zou CJ (2020) Heating characteristics of igneous rock-forming minerals under microwave irradiation. Int J Rock Mech Min Sci 135:104519. https://doi.org/10.1016/j.ijrmms.2020.104519

    Article  Google Scholar 

  44. Lu G-m, Li Y-h, Hassani F, Zhang X (2017) The influence of microwave irradiation on thermal properties of main rock-forming minerals. Appl Therm Eng 112:1523–1532. https://doi.org/10.1016/j.applthermaleng.2016.11.015

    Article  CAS  Google Scholar 

  45. Rahman A, Tardio J, Bhargava SK, Zaman MN, Hasan ASMM, Torpy A, Pownceby MI (2020) Comparison of the chemistry and mineralogy of ilmenite concentrates sourced from fluvial (Brahmaputra River) and beach placer (Cox’s Bazar) deposits, Bangladesh. Ore Geol Rev 117:103271. https://doi.org/10.1016/j.oregeorev.2019.103271

    Article  Google Scholar 

  46. Sukmara S, Suyanti, Adi WA, Manaf A (2022) Mineral analysis and its extraction process of ilmenite rocks in titanium-rich cumulates from Pandeglang Banten Indonesia. J Mater Res Technol 17:3384–3393. https://doi.org/10.1016/j.jmrt.2022.02.005

    Article  CAS  Google Scholar 

  47. Izawa MRM, Applin DM, Morison MQ, Cloutis EA, Mann P, Mertzman SA (2021) Reflectance spectroscopy of ilmenites and related Ti and TiFe oxides (200 to 2500 nm): spectral–compositional–structural relationships. Icarus 362:114423. https://doi.org/10.1016/j.icarus.2021.114423

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation No. 22-29-00846, https://rscf.ru/en/project/22-29-00846/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Semenishchev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalivaiko, K.A., Skripchenko, S.Y., Titova, S.M. et al. Radioactive wastes from near-surface storage facility of uranium conversion production. J Radioanal Nucl Chem 332, 2499–2512 (2023). https://doi.org/10.1007/s10967-023-08912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08912-6

Keywords

Navigation