Log in

Transformation of radionuclide occurrence state in uranium and strontium recycling by Saccharomyces cerevisiae

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radionuclide recycling by biosorption combined with the ashing process is a promising nuclide recovery method. To investigate the transformation process of radionuclide occurrence state in bio-recycling, uranium and strontium recycling by S.cerevisiae were studied. S. cerevisiae exhibits good performance in the enrichment of uranium and strontium with as high as almost 90% biosorption efficiency. The results demonstrate that adsorbed uranium and strontium precipitates can be transformed into authenite and strontium sulfate on cell surface. The final state of uranium is mainly in form of UP2O7, while the final state of Sr(II) is mainly in form of SrSO4 after ashing.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agency ONE (2007) Nuclear Development Risks and Benefits of Nuclear Energy: Complete Edition - ISBN 9264035516. Sourceoecd Nuclear Energy, volume 2007: p. i-88(89)

  2. Kochkin B et al (2021) Problems and perspectives of borehole disposal of radioactive waste. Prog Nucl Energy 139:103867

    Article  CAS  Google Scholar 

  3. Ferenbaugh JK et al (2002) Radionuclides in soil and water near a low-level disposal site and potential ecological and human health impacts. Environ Monitor Assess 74:243

    Article  CAS  Google Scholar 

  4. Banala UK, Das NPI, Toleti SR (2021) Microbial interactions with uranium: Towards an effective bioremediation approach. 101254Environ Technol Innov 21:101254

    CAS  Google Scholar 

  5. Liu M et al (2010) Biosorption of uranium by Saccharomyces cerevisiae and surface interactions under culture conditions. Bioresour Technol 101(22):8573–8580

    Article  CAS  Google Scholar 

  6. Hu W et al (2017) Synergistic interface behavior of strontium adsorption using mixed microorganisms. Environ Sci Pollut Res Int 25:22368

    Article  Google Scholar 

  7. Zhang J et al (2020) Uranium biosorption mechanism model of protonated Saccharomyces cerevisiae. J Hazard Mater 385:121588

    Article  CAS  Google Scholar 

  8. Liu M et al (2016) Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis: a decrement solution for nuclide and heavy metal disposal. J Hazard Mater 314:295–303

    Article  CAS  Google Scholar 

  9. Chen L et al (2021) Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: a review. J Hazard Mater 413:125319

    Article  CAS  Google Scholar 

  10. Farhan SN, Khadom AA (2015) Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int J Ind Chem 6(2):119–130

    Article  CAS  Google Scholar 

  11. Altimari P, Caprio FD, Pagnanelli F (2017) Biosorption of Copper by Saccharomyces cerevisiae: From Biomass Characterization to Process Development.

  12. Fadel M et al (2017) Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. Hbrc J 13(1):106–113

    Article  Google Scholar 

  13. Qiu L et al (2017) Biosorption of the strontium ion by irradiated Saccharomyces cerevisiae under culture conditions. J Environ Radioact 172:52–62

    Article  CAS  Google Scholar 

  14. Zheng XY et al (2017) Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-crystal formation of chernikovite. Chemosphere 175:161–169

    Article  CAS  Google Scholar 

  15. Liu M et al (2014) Biosorption of strontium from simulated nuclear wastewater by Scenedesmus spinosus under culture conditions: adsorption and bioaccumulation processes and models. Int J Environ Res Public Health 11(6):6099–6118

    Article  CAS  Google Scholar 

  16. Shen Y et al (2018) The biomineralization process of uranium(VI) by Saccharomyces cerevisiae—transformation from amorphous U(VI) to crystalline chernikovite. Appl Microbiol Biotechnol 102:4217

  17. Hu W et al (2017) Synergistic interface behavior of strontium adsorption using mixed microorganisms. Environmental Science & Pollution Research

  18. Pathirana C et al (2022) Biosorption of heavy metals: transferability between batch and column studies. Chemosphere 294:133659

    Article  CAS  Google Scholar 

  19. ** Y, Macaskie LE (2010) Removal of the tetravalent actinide thorium from solution by a biocatalytic system. J Chem Technol Biotechnol Biotechnol 64(1):87–95

    Google Scholar 

  20. Şimşek S, Yılmaz E, Boztuğ A (2013) Amine-modified maleic anhydride containing terpolymers for the adsorption of uranyl ion in aqueous solutions. J Radioanal Nucl Chem 298(2):923–930

    Article  Google Scholar 

  21. Şenol ZM et al (2021) Synthesis and characterization of chitosan–vermiculite composite beads for removal of uranyl ions: isotherm, kinetics and thermodynamics studies. J Radioanal Nucl Chem 327(1):159–173

    Article  Google Scholar 

  22. Monnin C (1999) A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200°C and to 1 kbar. Chem Geol 153(1):187–209

    Article  CAS  Google Scholar 

  23. Monnin C, Galinier C (1988) The solubility of celestite and barite in electrolyte solutions and natural waters at 25°C: A thermodynamic study. Chem Geol 71(4):283–296

    Article  CAS  Google Scholar 

  24. Merroun ML et al (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71(9):5532

    Article  CAS  Google Scholar 

  25. Krueger S et al (1993) Characterization of the Binding of Gallium, Platinum, and Uranium to Pseudomonas fluorescens by Small-Angle X-Ray Scattering and Transmission Electron Microscopy, vol 59. Applied & Environmental Microbiology, pp 4056–4064. 12

  26. Wang T et al (2017) Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. J Environ Radioact 167:92–99

    Article  CAS  Google Scholar 

  27. Shao XZ (2010) Biosorption of strontium ions by magnetically modified yeast cells. Sep Sci Technol 45(10):1499–1504

    Article  Google Scholar 

  28. Guo Y et al (2016) The biosorption of Sr(II) on Bacillus subtilis: a combined batch and modeling study. J Mol Liq 220:762–767

    Article  CAS  Google Scholar 

  29. Wang Q et al (2007) Alginate/polyethylene glycol blend fibers and their properties for drug controlled release. J Biomedical Mater Res Part A 82(1):122–128

    Article  Google Scholar 

  30. Gniadecka M et al (2004) Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. J Invest Dermatology 122(2):443–449

    Article  CAS  Google Scholar 

  31. Huang CY, Balakrishnan G, Spiro TG (2006) Protein secondary structure from deep-UV resonance Raman spectroscopy. J Raman Spectrosc 37(1–3):277–282

    Article  CAS  Google Scholar 

  32. Barth A (2000) The infrared absorption of amino acid side chains. Prog Biophys Mol Biol 74(3):141–173

    Article  CAS  Google Scholar 

  33. Schwanninger M et al (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36(1):23–40

    Article  CAS  Google Scholar 

  34. Ramos ML et al (2017) Oxocomplexes of U (vi) with 8-hydroxyquinoline-5-sulfonate in solution: structural studies and photophysical behaviour. Dalton Trans 46:9358–9368

    Article  CAS  Google Scholar 

  35. Fan X, Xu N-J, Shi J-G (2003) Bromophenols from the Red Alga Rhodomela confervoides. J Nat Prod 66(3):455–458

    Article  CAS  Google Scholar 

  36. Palaniappan PR, Pramod K (2010) FTIR study of the effect of nTiO2 on the biochemical constituents of gill tissues of Zebrafish (Danio rerio). Food Chem Toxicol 48(8):2337–2343

    Article  CAS  Google Scholar 

  37. Takagi H (2021) Molecular mechanisms and highly-functional development for stress tolerance of the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 85:1017–1035

    Article  Google Scholar 

  38. Zhang J, Kirkham M (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35(5):785–791

    Article  CAS  Google Scholar 

  39. Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53(3):247–257

    Article  CAS  Google Scholar 

  40. Wilmsen PK, Spada DS, Salvador M (2005) Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem 53(12):4757–4761

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (42007281, 51974261), the Key Project of National Natural Science Foundation of China (41831285), and the National Key Research and Development Program (2018YFC1903304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faqin Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Dong, F., Dai, Q. et al. Transformation of radionuclide occurrence state in uranium and strontium recycling by Saccharomyces cerevisiae. J Radioanal Nucl Chem 331, 2621–2629 (2022). https://doi.org/10.1007/s10967-022-08308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08308-y

Keywords

Navigation