Log in

On the production of pharmaceutical grade indium-111-chloride in the medical cyclotron from natural cadmium target and its use in formulation of diagnostic patient dose of 111In-pentetreotide for imaging somatostatin receptor overexpression

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A prototype, semi-automated, indigenous solid-target assembly has been developed to produce clinical grade 111InCl3 from natCd targets. Fluka Monte Carlo code was used to estimate the optimum proton energy range for 111Cd(p,n)111In production route and suitable decay time to get high specific-activity of 111In. The radiochemical purification and separation have been optimized using column chromatography separation method. The quality of 111InCl3 has been established by radiolabeling of Pentetreotide yielding 111In-Pentetreotide, in acceptable radiochemical purity (RCP), with expected biological efficacy in in-vitro and in-vivo models. Pre-clinical translation of 111InCl3 in formulation of 111In-Pentetreotide adds support toward its use as a clinical grade radiochemical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bomanji JB, Papathanasiou ND (2012) 111In-DTPA0-octreotide (Octreoscan), 131I-MIBG and other agents for radionuclide therapy of NETs. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-011-2013-8

    Article  PubMed  Google Scholar 

  2. Wong JYC, Raubitschek A, Yamauchi D et al (2010) A pretherapy biodistribution and dosimetry study of indium-111-radiolabeled trastuzumab in patients with human epidermal growth factor receptor 2-overexpressing breast cancer. Cancer Biother Radiopharm 25:387–394. https://doi.org/10.1089/cbr.2010.0783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jamous M, Haberkorn U, Mier W (2013) Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules 18:3379–3409. https://doi.org/10.3390/molecules18033379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khandaker MU, Kim K, Lee MW et al (2008) Production cross-sections for the residual radionuclides from the natCd(p, x) nuclear processes. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 266:4877–4887. https://doi.org/10.1016/j.nimb.2008.08.014

    Article  CAS  Google Scholar 

  5. Lahiri S, Maiti M, Ghosh K (2013) Production and separation of 111In: an important radionuclide in life sciences: a mini review. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-012-2344-3

    Article  Google Scholar 

  6. Nortier FM, Mills SJ, Steyn GF (1990) Excitation functions and production rates of relevance to the production of 111In by proton bombardment of natCd and natIn up to 100 MeV. Int J Radiat Appl Instrum Part 41:1201–1208. https://doi.org/10.1016/0883-2889(90)90207-W

    Article  CAS  Google Scholar 

  7. Dahl JR, Tilbury RS (1972) The use of a compact, multi-particle cyclotron for the production of 52Fe, 67Ga, 111In and 123I for medical purposes. Int J Appl Radiat Isot 23:431–437. https://doi.org/10.1016/0020-708X(72)90110-X

    Article  CAS  PubMed  Google Scholar 

  8. Betak E, Rurarz E, Mikolajewski S, Wojtkowska J (2007) A new method of pure In-III production by proton-induced nuclear reactions with enriched Sn-112. Nukleonika 52:17–27

    CAS  Google Scholar 

  9. Hermanne A, Adam-Rebeles R, Van Den Winkel P et al (2014) Production of 111In and 114mIn by proton induced reactions: an update on excitation functions, chemical separation-purification and recovery of target material. Radiochim Acta 102:1111–1126. https://doi.org/10.1515/ract-2013-2233

    Article  CAS  Google Scholar 

  10. Ferrari A, Sala PR, Fasso A, Ranft J (2005) FLUKA: a multi-particle transport code. Cern Eur Organ Nucl Res. https://doi.org/10.5170/CERN-2005-010

    Article  Google Scholar 

  11. Böhlen TT, Cerutti F, Chin MPW et al (2014) The FLUKA code: developments and challenges for high energy and medical applications. Nucl Data Sheets 120:211–214. https://doi.org/10.1016/j.nds.2014.07.049

    Article  CAS  Google Scholar 

  12. Fassò A, Ferrari A, Roesler S et al (2003) The physics models of FLUKA: status and recent developments. Comput High Energy Nucl Phys; ar**v:hep-ph/0306267

  13. Zaitseva NG, Knotek O, Kowalew A et al (1990) Excitation functions and yields for 111In production using 113, 114, natCd(p, xn)111In reactions with 65 MeV protons. Int J Radiat Appl Instrum Part 41:177–183. https://doi.org/10.1016/0883-2889(90)90105-P

    Article  CAS  Google Scholar 

  14. Tárkányi F, Király B, Ditrói F et al (2006) Activation cross-sections on cadmium: proton induced nuclear reactions up to 80 MeV. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 245:379–394. https://doi.org/10.1016/j.nimb.2005.12.004

    Article  CAS  Google Scholar 

  15. Khandaker MU, Kim K, Lee M et al (2008) Experimental study of proton induced cross-sections on natural cadmium leading to the production of 111 radionuclide experimental study of proton induced cross-sections on natural cadmium leading to the production of experimental study of proton induced cross-sections on natural cadmium leading to the production of 111 In radionuclide. J Nucl Sci Technol 45:237–240. https://doi.org/10.1080/00223131.2008.10875831

    Article  Google Scholar 

  16. International Atomic Energy Agency (2009) Cyclotron produced radionuclides: physical characteristics and production methods, Technical Reports Series No. 468, IAEA, Vienna

  17. Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM: the stop** and range of ions in matter. Ghent University Library, Ghent

    Google Scholar 

  18. Jovicevic JN, Despic AR, Drazic DM (1977) Studies of the deposition of cadmium on foreign substrates. Electrochim Acta 22:577–587

    Article  CAS  Google Scholar 

  19. Dolati A, Afshar A, Ghasemi H (2005) A kinetic study on the electrodeposition of cadmium with the presence of organic agents in sulfate solutions. Mater Chem Phys 94:23–28. https://doi.org/10.1016/j.matchemphys.2005.03.057

    Article  CAS  Google Scholar 

  20. Montiel T, Solorza O, Sánchez H (2000) Study of cadmium electrochemical deposition in sulfate medium. J Electrochem Soc 147:1031. https://doi.org/10.1149/1.1393309

    Article  CAS  Google Scholar 

  21. Saha S, Tachikawa N, Yoshii K et al (2018) Electrodeposition of cadmium from lewis basic hydrophobic room-temperature ionic liquid. Electrochemistry 86:229–234. https://doi.org/10.5796/electrochemistry.18-00011

    Article  CAS  Google Scholar 

  22. Chattopadhyay S, Das MK, Sarkar BR, Ramamoorthy N (1997) Radiochemical separation of high purity 111In from cadmium, copper, aluminium and traces of iron: use of a cation exchange resin with hydrobromic acid and hydrochloric acid. Appl Radiat Isot. https://doi.org/10.1016/S0969-8043(97)00045-6

    Article  Google Scholar 

  23. Kushwaha K, Mitra A, Lad S et al (2019) Production, separation and purification of In-111 from irradiated natural CD: produced In-111 quality evaluated after radiolabeling with pentetreotide. In: International symposium on trends in radiopharmaceuticals. IAEA, pp 290–291

  24. Froidevaux S, Heppeler A, Eberle AN et al (2000) Preclinical comparison in AR4–2J tumor-bearing mice of four radiolabeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-somatostatin analogs for tumor diagnosis and internal radiotherapy. Endocrinology 141:3304–3312. https://doi.org/10.1210/endo.141.9.7683

    Article  CAS  PubMed  Google Scholar 

  25. De Oliveira IM, Martins PDA, Da Silva JL et al (2011) Alternative methods for radiochemical purity testing In radiopharmaceuticals. In: International nuclear atlantic conference—INAC 2011

  26. Duncan J, Stephenson MT, Wu HP, Anderson C (1997) Indium-111-diethylenetriaminepentaacetic acid-octreotide is delivered in vivo to pancreatic, tumor cell, renal, and hepatocyte lysosomes. Cancer Res 57(4):659–671

    CAS  PubMed  Google Scholar 

  27. OctreoscanTM Kit for the preparation of Indium In 111 pentetreotide diagnostic—for intravenous use. Rx only. https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=93d8f3b2-1216-41dc-a63d-0e812b33891d&type=display. Accessed 9 Jan 2021

  28. Cihlo J, Melicharová L, Petrik M et al (2008) Comparison of 111In-DOTA-NOC and 111I-DOTA-TATE distribution in the target and dose-limiting tissues: conflicting results in vitro and in vivo. Anticancer Res 28:2189–2195

    CAS  PubMed  Google Scholar 

  29. Breeman WAP, Kwekkeboom DJ, Kooij PPM et al (1995) Effect of dose and specific activity on tissue distribution of indium-111-pentetreotide in rats. J Nucl Med 36:623–627

    CAS  PubMed  Google Scholar 

  30. Tárkányi F, Szelecsényi F, Kopecký P et al (1994) Cross sections of proton induced nuclear reactions on enriched 111Cd and 112Cd for the production of 111In for use in nuclear medicine. Appl Radiat Isot 45:239–249. https://doi.org/10.1016/0969-8043(94)90018-3

    Article  PubMed  Google Scholar 

  31. Kushwaha K, Maletha P, Kashid R et al (2017) Development of cyclotron solid target removal assembly and estimation of radiation exposure in removal process. Indian J Nucl Med 32(5)Sup:S33:57:134307. ISSN: 0972-3919

Download references

Acknowledgements

The authors gratefully acknowledge the support and encouragement of Director Medical Group BARC, Mumbai, India, towards carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, K., Mitra, A., Chakraborty, A. et al. On the production of pharmaceutical grade indium-111-chloride in the medical cyclotron from natural cadmium target and its use in formulation of diagnostic patient dose of 111In-pentetreotide for imaging somatostatin receptor overexpression. J Radioanal Nucl Chem 328, 835–846 (2021). https://doi.org/10.1007/s10967-021-07652-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07652-9

Keywords

Navigation