Log in

Sorption of uranium on freshly prepared hydrous titanium oxide and its utilization in determination of 236U using accelerator mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The determination of 236U with accelerator mass spectrometry (AMS) requires efficient separation methods with high concentration factors. The article proposes an alternative method of uranium separation from aqueous solutions to commonly used iron co-precipitation. This “homogeneous precipitation” is based on unique properties of fresh hydrous titanium oxide, prepared by hydrolysis of its organic precursor—tetra-n-butylorthotitanate—directly in the aqueous sample solution. Besides high uranium uptake, the results shows very promising properties of this uranium-titanium oxide precipitate for 236U-AMS measurements providing up to 4 times higher negative ion yield comparing with common uranium oxide matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination—an overview. Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  2. Rao L (2011) Recent International R&D Activities in the Extraction of Uranium from Seawater. Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  3. Morrison SJ, Spangler RR (1992) Extraction of uranium and molybdenum from aqueous solutions: a survey of industrial materials for use in chemical barriers for uranium mill tailings remediation. Environ Sci Technol 26:1922–1931

    Article  CAS  Google Scholar 

  4. Motl A, Šebesta F, John J, Ndiaye I, Němec M, Špendlíková I (2013) Comparison of uranium extraction from model fresh water on TiO-PAN and NaTiO-PAN composite absorbers. J Radioanal Nucl Chem 298:2057–2063

    Article  CAS  Google Scholar 

  5. Hellborg R, Skog G (2008) Accelerator mass spectrometry. Mass Spectrom Rev 27:398–427

    Article  CAS  Google Scholar 

  6. Špendlíková I, Raindl J, Němec M, Steier P, Mičolová P (2014) Preparation of pure TiO2 sorption material. J Radioanal Nucl Chem 300:1151–1158

    Article  Google Scholar 

  7. Liu SY, Feng QG (2011) Synthesis of uranium doped TiO2 nanomaterials and its visible light degradation property. Adv Mat Res 148–149:1208–1211

    Google Scholar 

  8. Steier P, Bichler M, Fifield LK, Golser R, Kutschera W, Priller A, Quinto F, Richter S, Srncik M, Terrasi F, Wacker L, Wallner A, Wallner G, Wilcken KM, Wild EM (2008) Natural and anthropogenic 236U in environmental samples. Nucl Instrum Meth B 266:2246–2250

    Article  CAS  Google Scholar 

  9. Rohwer H, Rheeder N, Hosten E (1997) Interaction of uranium and thorium with arsenazo III in an aqueous medium. Anal Chim Acta 341:263–268

    Article  CAS  Google Scholar 

  10. Steier P, Dellinger F, Forstner O, Golser R, Knie K, Kutschera W, Priller A, Quinto F, Srncik M, Terrasi F, Vockenhuber C, Wallner A, Wallner G, Wild EM (2010) Analysis and application of heavy isotopes in the environment. Nucl Instrum Meth B 268:1045–1049

    Article  CAS  Google Scholar 

  11. Fifield LK, Clacher AP, Morris K, King SJ, Cresswell RG, Day JP, Livens FR (1997) Accelerator mass spectrometry of the planetary elements. Nucl Instrum Meth B 123:400–404

    Article  CAS  Google Scholar 

  12. Qiao J, Hou X, Steier P, Golser R (2013) Sequential injection method for rapid and simultaneous determination of 236U, 237Np, and Pu isotopes in seawater. Anal Chem 85:11026–11033

    Article  CAS  Google Scholar 

  13. Srncik M, Steier P, Wallner G (2010) Determination of the isotopic ratio 236U/238U in Austrian water samples. Nucl Instrum Meth B 268:1146–1149

    Article  CAS  Google Scholar 

  14. Winkler SR, Steier P, Buchriegler J, Lachner J, Pitters J, Priller A, Golser R (2015) He strip** for AMS of 236U and other actinides using a 3 MV tandem accelerator. Nucl Instrum Meth B 361:458–464

    Article  CAS  Google Scholar 

  15. Raindl J (2013) Development and testing of procedures for uranium separation from natural waters with sorption materials based on TiO2. Diploma thesis, Prague, Czech Technical University in Prague (in Czech)

Download references

Acknowledgments

This research has been supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS 14/154/OHK4/2T/14, by the Ministry of Industry and Trade of the Czech Republic under grant No. FR-TI3/245, by the Ministry of Education, Youth and Sports of CR under grant No. 7AMB12AT022 and by the Austrian Agency for International Cooperation in Education and Research under grant No. CZ14/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Špendlíková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Špendlíková, I., Němec, M., Steier, P. et al. Sorption of uranium on freshly prepared hydrous titanium oxide and its utilization in determination of 236U using accelerator mass spectrometry. J Radioanal Nucl Chem 311, 447–453 (2017). https://doi.org/10.1007/s10967-016-5013-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5013-0

Keywords

Navigation