Log in

Adsorption kinetic, isotherm and thermodynamic studies of Sr2+ onto hexagonal tungsten oxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Hexagonal tungsten oxide (hex-WO3) with exchangeable sodium and ammonium cations located in hexagonal channel was synthesized by a facile hydrothermal treatment of sodium tungstate dihydrate in concentrated HCl solution in the presence of ammonium sulfate. An attempt was made to assess the potential of hex-WO3 for the adsorption of Sr2+ ions from acidic radioactive waste solutions. Adsorption of Sr2+ reached equilibrium very quickly in 2 h in acidic aqueous solution. Maximum removal of Sr2+ ions occurred at pH 4. Equilibrium studies showed that the extent of Sr2+ ions uptake by hex-WO3 was better described by the Freundlich isotherm in comparison with the Langmuir model. The thermodynamic parameters showed that the adsorption of Sr2+ ions onto hex-WO3 was spontaneous and exothermic under the studied conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Paul B, Yang D, Martens WN, Frost RL (2011) J Collid Interf Sci 356:240–247

    Article  CAS  Google Scholar 

  2. Möller T, Clearfield A, Harjula R (2002) Micropor Mesopor Mater 54:187–199

    Article  Google Scholar 

  3. Nyman M, Tripathi A, Parise JB, Maxwell RS, Harssion WTA, Neoff TM (2001) J Am Chem Soc 123:1529–1530

    Article  CAS  Google Scholar 

  4. Li X, Liu B, Jian Y, Zhong W, Mu W, He J, Ma Z, Liu G, Luo S (2012) Sep Sci Tech 47:896–902

    Article  CAS  Google Scholar 

  5. Lan Y, Su Z, Li X, Jiang Z, **e J, Li S (2007) J Radioanal Nucl Chem 273:99–102

    Article  CAS  Google Scholar 

  6. El-Kamash AM (2008) J Hazard Mater 151:432–445

    Article  CAS  Google Scholar 

  7. Tripathi A, Medvedev DG, Nyman M, Clearfield A (2003) J Solid State Chem 175:72–83

    Article  CAS  Google Scholar 

  8. Ariga K, Ishihara S, Abe H, Li M, Hill JP (2012) J Mater Chem 22:2369–2377

    Article  CAS  Google Scholar 

  9. Yang D, Zheng Z, Yuan Y, Liu H, Waclawik ER, Ke X, **e M, Zhu H (2010) Phys Chem Chem Phys 12:1271–1277

    Article  CAS  Google Scholar 

  10. Yang DJ, Zheng ZF, Zhu HY, Liu HW, Gao XP (2008) Adv Mater 20:2777–2781

    Article  CAS  Google Scholar 

  11. Li N, Zhang L, Chen Y, Fang M, Zhang J, Wang H (2012) Adv Funct Mater 22:835–841

    Article  CAS  Google Scholar 

  12. Yang D, Sarina S, Zhu H, Liu H, Zheng Z, **e M, Smith SV, Komarneni S (2011) Angew Chem Int Ed 50:10594–10598

    Article  CAS  Google Scholar 

  13. Zhuang Y, Yang Y, **ang G, Wang X (2009) J Phys Chem C 113:10441–10445

    Article  CAS  Google Scholar 

  14. Huang J, Cao Y, Liu Z, Deng Z, Tang F, Wang W (2012) Chem Eng J 180:75–80

    Article  CAS  Google Scholar 

  15. Oi J, Kishimoto A, Kudo T, Hiratani M (1992) J Solid State Chem 96:13–19

    Article  CAS  Google Scholar 

  16. Gerand B, Novogorocki G, Guenot J, Figlarz M (1979) J Solid State Chem 29:429–434

    Article  CAS  Google Scholar 

  17. Whittingham MS (2004) Solid State Ionics 168:255–263

    Article  CAS  Google Scholar 

  18. Paris KP, Price E, Whittingham MS (1992) Chem Mater 4:307–312

    Article  Google Scholar 

  19. Griffith CS, Luca V (2004) Chem Mater 16:4992–4999

    Article  CAS  Google Scholar 

  20. Michailovske A, Kiebach R, Bensch W, Grunwaldt JD, Barker A, Komarneni S, Patzke GR (2007) Chem Mater 19:185–197

    Article  Google Scholar 

  21. Szilágyi IM, madarász J, Pokol G, Király P, Tárkáanyi G, Saukko S, Mizesei J, Tóth AL, Szabó K, Varga-Josepovits K (2008) Chem Mater 20:4116–4125

    Article  Google Scholar 

  22. Phuruangrat A, Ham DJ, Hong SJ, Thongtem S, Lee JS (2010) J Mater Chem 20:1683–1960

    Article  CAS  Google Scholar 

  23. Song XC, Zheng YF, Yang E, Wang Y (2007) Mater Lett 61:3904–3908

    Article  CAS  Google Scholar 

  24. Choi HG, Jung YH, Kim DK (2005) J Am Ceram Soc 88:1684–1686

    Article  CAS  Google Scholar 

  25. Lagergren S, Sven K (1898) Vetenskapsakad Handl. 24:1–39

    Google Scholar 

  26. Ho YS (2010) Scientometrics 59:171–177

    Google Scholar 

  27. Ho YS, McKay G (1999) Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  28. Ho YS, McKay G (2000) Water Res 34:735–742

    Article  CAS  Google Scholar 

  29. Ferrah N, Abderahim O, Didi MA, Villemin D (2011) J Radioanal Nucl Chem 289:721–730

    Article  CAS  Google Scholar 

  30. Kadous A, Didi MA, Villemin D (2010) J Radioanal Nucl Chem 284:431–438

    Article  CAS  Google Scholar 

  31. Weber WJ, Morris JC (1963) J Sanit Eng Div Amer Soc Civ Eng 89:31–60

    Google Scholar 

  32. de Carvalho TEM, Fungaro DA, Magdalena CP, Cunico P (2011) J Radioanal Nucl Chem 289:617–626

    Article  CAS  Google Scholar 

  33. Liu Y, Yuan L, Yuan Y, Lan J, Li Z, Feng Y, Zhao Y, Chai Z, Shi W (2012) J Radioanal Nucl Chem 292:803–810

    Article  CAS  Google Scholar 

  34. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  35. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Ind Eng Chem Fundam 5:212–223

    Article  CAS  Google Scholar 

  36. Freundlich H, Phys Z (1906) ChemFrankfurt 57A:385

    Google Scholar 

  37. Ho YS, Ng JCY, McKay G (2000) Sep Purif Methods 29:189–232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant 41103077) and China Academy of Engineering Physics is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ngliang Li or Shoujian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Mu, W., Liu, B. et al. Adsorption kinetic, isotherm and thermodynamic studies of Sr2+ onto hexagonal tungsten oxide. J Radioanal Nucl Chem 298, 47–53 (2013). https://doi.org/10.1007/s10967-013-2617-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2617-5

Keywords

Navigation