Log in

Photo-neutron cross-section of 100Mo

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The 100Mo(γ, n) reaction cross-section was experimentally determined at end point bremsstrahlung energy of 10 and 12.5 MeV using off-line γ-ray spectrometric technique. It was also found that 100Mo(γ, n) reaction cross-section increases sharply from the end point bremsstrahlung energy of 10 MeV to 12.5 MeV, which may be because of GDR around the energy region of 12–16 MeV. The 100Mo(γ, n) reaction cross-section as a function of photon energy was calculated theoretically using TALYS 1.2 computer code. The flux-weighted average values of 100Mo(γ, n) reaction cross-section for bremsstrahlung having end point energy of 10 and 12.5 MeV were also calculated using the experimental and theoretical data of mono-energetic photon. The present experimental 100Mo(γ, n) reaction cross-sections were compared with the bremsstrahlung flux-weighted average values of experimental and theoretical data and found to be in the lower side for 10 MeV and in the higher side for 12.5 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Larsson CL (2004) “Availability and Use of Medical Isotopes in Canada”, TM 2004-218, OMB no. 0704-0188. Defense Research and Development Canada (DRDC), Ottawa

  2. Cameron CB (1970) J Clin Pathol April 23(3):280

    Article  Google Scholar 

  3. Schiepers C (2006) Diagnostic nuclear medicine. Springer, Berlin

    Google Scholar 

  4. Royston HF, Jeremy JL, Buckeley Pal T, Daniel LD, James TE, Paulenova A (2006) J Chem Educ 83:625

    Article  Google Scholar 

  5. Cook GJR (2006) Clin Nucl Med 1:5–27

    Google Scholar 

  6. Cook GJR (2003) Br J Radiol 76:S152–S158

    Article  CAS  Google Scholar 

  7. National Council of Radiation Protection and Measurements (NCRP) (1996) Sources and magnitude of occupational and public exposures from nuclear medicine procedures, NCRP Report No 124. NCRP, Bethesda

  8. International Atomic Energy Agency (2003) Categorization of radioactive sources- Revision of IAEA-TECDOC-1191, Categorization of radioactive sources- Revision of IAEA-TECDOC-1344, IAEA, Vienna

  9. Scholten B, Lambrecht RM, Michel C, Hernan VR, Qaim SM (1999) Appl Radiat Isot 51:69

    Article  CAS  Google Scholar 

  10. Froment P, Tilquin I, Cogneau M, Delbar Th, Vervier J, Ryckewaert G (2002) Nucl Instrum Methods Phys Res 493:165

    Article  CAS  Google Scholar 

  11. Sabel’nikov AV, Maslov OD, Molokanova LG, Gustova MV, Dmitriev SN (2006) Radiokhimiya 48:172 or Radiochemistry 48:191

  12. Ruth T (2009) Nature 457:536–537. doi:10.1038/nature07540

    Google Scholar 

  13. IAEA (2001) Charged particle cross-section data base for medical radioisotope production:diagnostic radioisotopes and monitor reactions, IAEA-TECDOC-1211. http://www-nds.iaea.org. Accessed May 2001

  14. Gambini JP, Cabral P, Alonso O, Savio E, Figueroa SD, Zhang X, Lixin M, Susan LD, Thomas PQ (2011) Nucl Med Biol 38:255

    Article  CAS  Google Scholar 

  15. Terán MA, Elena M, Reyes AL, Andrea P, Marcelo V, Patricia E, Jose PP, Eduardo S (2011) Nucl Med Biol 38:279

    Article  Google Scholar 

  16. Browne E, Firestone RB (1986) In: Shirley VS (ed) Table of radioactive isotopes. Wiley, New York

    Google Scholar 

  17. Firestone RB, Ekstrom LP (2004) Table of radioactive isotopes. Lawrence Berkeley National Laboratory, Berkeley

  18. Blachot J, Fiche Ch (1981) Ann Phys 6:3–218

    CAS  Google Scholar 

  19. Bourges J, Madic C, Koehly G, Nguyent H, Baltes D, Landesman C, Simon A (1996) Nucl Technol 113:204

    CAS  Google Scholar 

  20. Richards P (965) Report no. BNL 9601. Brookhaven National Laboratory, Long Island

  21. Arino H, Frank J C, Kenneth D G, Alfred K T (1976) US Patent 3,940,318, 24 February 1976

  22. Uddin MS, Baba M (2008) Appl Radiat Isot 66:208

    Article  CAS  Google Scholar 

  23. Uddin MS, Hagiwara M, Tarkanyi F, Ditroi F, Baba M (2004) Appl Radiat Isot 60:911

    Article  CAS  Google Scholar 

  24. Krivan V (1975) Anal Chim Acta 79:161

    Article  CAS  Google Scholar 

  25. Habs D, Köster U (2010) Appl Phys B. doi:10.1007/s00340-010-4261-x

  26. Uvarov VL, Dikiy NP, Dovbnya AN, Medvedyeva YP, Pugachov GD, Tur YD (1997) Particle accelerator conference, Proceedings of the 1997. American Physical Society, San Antonio

  27. Titus WF (1959) Phys Rev 115:351

    Article  CAS  Google Scholar 

  28. Naik H, Sarbjit Singh, Goswami A, Manchanda VK, Kim G, Kim KS, Lee M, Shakilur MR, Raj D, Ganesan S, Suryanarayana SV, Cho M-H, Namkung W (2011) Nucl Inst Methods Phys Res B 269:1417

    Article  CAS  Google Scholar 

  29. Kim KS, Shakilur Rahman MD, Lee M, Kim G, Khue PD, Do NG, Cho M-H, Ko IS, Namkung W, Naik H, Ro Tae Ik (2011) J Radioanal Nucl Chem 287:869

    Article  CAS  Google Scholar 

  30. Thiep TD, An TT, Khai NT, Cuong PV, Vinh TN (2010) J Radioanal Nucl Chem 286:161

    Article  Google Scholar 

  31. IAEA (2000) Hand book on photonuclear data for applications cross-sections and spectra. IAEA-TECDOC-1178. IAEA, Vienna. http://www-nds.iaea.org

  32. Beil H, Bergere R, Carols P, Lepretre A, de Miniac A, Veyssiere A (1974) Nucl Phys A 227:427

    Article  CAS  Google Scholar 

  33. Gellie RW (1968) Aust J Phys 21:765

    Article  CAS  Google Scholar 

  34. Koning AJ, Hilaire S, Duijvestijn MC (2005) TALYS: comprehensive nuclear reaction modeling. In: Haight RC, Chadwick MB, Kawano T, Talou P (eds) Proceedings of the international conference on nuclear data for science and technology-ND 2004, AIP vol 769. Santa Fe, USA, pp 1154–1159

  35. Yoshinaga O, Toyoaki K, Nobuyoshi S (1969) Bull Chem Soc Jpn 42:387

    Article  Google Scholar 

  36. Yamadera A, Yoshitomo U, Nakamura T (1993) Nucl Instrum Methods Phys Res A329:188

    CAS  Google Scholar 

  37. Varlamov VV, Ishkhanov BS, Orlin VN, Yu TS (2010) Ser Fiz 74:884

    CAS  Google Scholar 

  38. **aolong H (2007) Nucl Data Sheets 108:1093

    Article  Google Scholar 

  39. Nelson WR, Hirayama H, Rogers DWO (1985) SLAC-Report-265. Linear Accelerator Center, Stanford

  40. Medsker LR (1974) Nucl Data Sheets 12:431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the staff of electron LINAC at EBC, Kharghar, Navi-Mumbai and Dr. L. M. Gantayet, Group Director of the BTD group, BARC for providing the electron beam to carry out the experiments. The authors are thankful especially to Mukesh Kumar, Nishant Choudhury, Dhruva Bhattarjee, Jayanta Mondal, Rajneesh Tiwari, Manjunath, Abhijit R Tillu, Harshit Thyagi, Shiv Chandan, and Jayaprakash of EBC, Kharghar. One of the authors Mrs. Rita Crasta gratefully acknowledges BRNS, Department of Atomic Energy, Government of India, for the financial support and Mangalore University Microtron Centre Research Group and technical staff for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crasta, R., Naik, H., Suryanarayana, S.V. et al. Photo-neutron cross-section of 100Mo. J Radioanal Nucl Chem 290, 367–373 (2011). https://doi.org/10.1007/s10967-011-1247-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1247-z

Keywords

Navigation