Log in

Study on two different dithiobenzoates effectiveness in bulk RAFT polymerization of β-myrcene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The study aimed to evaluate the impact of two chain transfer controllers, ethyl 2-(phenylcarbonothiolthio)-2-phenylacetate (EPPA) and 2-(4-methoxyphenylcarbonothiolthio) ethanoic acid (MPEA), from the dithioester family (dithiobenzoates), on the RAFT polymerization of β-myrcene. The initiators employed were azobisisobutyronitrile (AIBN) or dicumylperoxide (DCP), at 65 °C and 90 °C, respectively. The study analyzed the impact of the type of controller, temperature, and initiator/controller ratio on the living nature of β-myrcene polymerization. The results showed that with an increase in the initiator/controller ratio, the rate of polymerization increased, but the obtained molar masses decreased. The MPEA controller showed better performance in controlling the termination and chain transfer reactions, especially when AIBN was used as the initiator. A rise in polymerization temperature led to a loss in the control of polymerization, causing an increase in the degree of polydispersity due to the presence of transfer reactions. The most effective control in the RAFT polymerization of β-myrcene was achieved using MPEA as the controller and AIBN as the initiator, resulting in a poly(β-myrcene) with 87% 1,4-addition according to proton NMR analyses and a polydispersity of 1.27 by gel permeation chromatography (GPC). Finally, the study synthesized a poly(β-myrcene)-b-poly(styrene) block copolymer with low polydispersity (Ð1.1) by sequentially adding styrene to the previously synthesized MPEA-poly(β-myrcene)-based RAFT macrocontroller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mecking S (2004) Nature or petrochemistry? - Biologically degradable materials. Angewandte Chemie - International Edition 43:1078–1085

    Article  CAS  PubMed  Google Scholar 

  2. Singh P, Verma R (2020) Bioplastics: a green approach toward sustainable environment. In: Singh A, Srivastava S, Rathore D, Pant D (eds) Environmental microbiology and biotechnology, vol 1. Biovalorization of solid wastes and wastewater treatment. Springer, Singapore, pp 35–53

    Chapter  Google Scholar 

  3. Della Monica F, Kleij AW (2020) From terpenes to sustainable and functional polymers. Polym Chem 11:5109–5127. https://pubs.rsc.org/en/content/articlelanding/2020/py/d0py00817f

  4. Loughmari S, Hafid A, Bouazza A et al (2012) Highly stereoselective coordination polymerization of β-myrcene from a lanthanide-based catalyst: Access to bio-sourced elastomers. J Polym Sci A Polym Chem 50:2898–2905. https://doi.org/10.1002/pola.26069

    Article  CAS  Google Scholar 

  5. Díaz de León R, López R, Valencia L et al (2018) Towards Bioelastomers via Coordination Polymerization of Renewable Terpenes Using Neodymium-Based Catalyst Systems. Key Eng Mater 779:115–121. https://doi.org/10.4028/www.scientific.net/KEM.779.115

    Article  Google Scholar 

  6. de León D, Gómez RE, Enríquez-Medrano FJ, Maldonado Textle H et al (2016) Synthesis and characterization of high cis-polymyrcene using neodymium-based catalysts. Can J Chem Eng 94:823–832. https://doi.org/10.1002/cjce.22458

    Article  CAS  Google Scholar 

  7. Dev A, Rösler A, Schlaad H (2021) Limonene as a renewable unsaturated hydrocarbon solvent for living anionic polymerization of β-myrcene. Polym Chem 12:3084–3087. https://doi.org/10.1039/D1PY00570G

    Article  CAS  Google Scholar 

  8. Lamparelli DH, Kleybolte MM, Winnacker M, Capacchione C (2021) Sustainable myrcene‐based elastomers via a convenient anionic polymerization. Polymers (Basel) 13. https://doi.org/10.3390/polym13050838

  9. Elabed ZO, Kherroub DE, Derdar H, Belbachir M (2021) Novel Cationic Polymerization of β-Myrcene Using a Proton Exchanged Clay (Maghnite-H+). Polym Sci, Ser B 63:480–487. https://doi.org/10.1134/S1560090421050043

    Article  Google Scholar 

  10. Sarkar P, Bhowmick AK (2014) Synthesis, characterization and properties of a bio-based elastomer: Polymyrcene. RSC Adv 4:61343–61354. https://doi.org/10.1039/c4ra09475a

    Article  CAS  Google Scholar 

  11. Hilschmann J, Kali G (2015) Bio-based polymyrcene with highly ordered structure via solvent free controlled radical polymerization. Eur Polym J 73:363–373. https://doi.org/10.1016/J.EURPOLYMJ.2015.10.021

    Article  CAS  Google Scholar 

  12. Sarkar P, Bhowmick AK (2016) Green Approach toward Sustainable Polymer: Synthesis and Characterization of Poly(myrcene-co-dibutyl itaconate). ACS Sustain Chem Eng 4:2129–2141. https://doi.org/10.1021/acssuschemeng.5b01591

    Article  CAS  Google Scholar 

  13. van der Hoff ME, B, (2002) Reactions between Peroxide and Polydiolefins. I&EC Product Research and Development 2:273–278. https://doi.org/10.1021/i360008a006

    Article  Google Scholar 

  14. Métafiot A, Kanawati Y, Gérard JF et al (2017) Synthesis of β-Myrcene-Based Polymers and Styrene Block and Statistical Copolymers by SG1 Nitroxide-Mediated Controlled Radical Polymerization. Macromolecules 50:3101–3120. https://doi.org/10.1021/acs.macromol.6b02675

    Article  CAS  Google Scholar 

  15. Pablo-Morales Á, Treviño ME, Saldívar-Guerra E (2022) Toward Bio-Sourced Elastomers with Reactive/Polar Groups. Myrcene – Glycidyl Methacrylate Copolymerization: Reactivity Ratios, Properties, and Preliminary RAFT Emulsion Polymerization. Macromol React Eng 16:2200007. https://doi.org/10.1002/mren.202200007

    Article  CAS  Google Scholar 

  16. Bauer N, Brunke J, Kali G (2017) Controlled Radical Polymerization of Myrcene in Bulk: Map** the Effect of Conditions on the System. ACS Sustain Chem Eng 5:10084–10092. https://doi.org/10.1021/acssuschemeng.7b02091

    Article  CAS  Google Scholar 

  17. Kalita U, Samanta S, Lal Banerjee S et al (2021) Biobased Thermoplastic Elastomer Based on an SMS Triblock Copolymer Prepared via RAFT Polymerization in Aqueous Medium. Macromolecules 54:1478–1488. https://doi.org/10.1021/acs.macromol.0c02169

    Article  CAS  Google Scholar 

  18. Luo W, Yang P, Gan Q et al (2021) Reversible addition–fragmentation chain transfer polymerization of myrcene derivatives: an efficient access to fully bio-sourced functional elastomers with recyclable, shape memory and self-healing properties. Polym Chem 12:3677–3687. https://doi.org/10.1039/D1PY00549A

    Article  CAS  Google Scholar 

  19. Hatton FL (2020) Recent advances in RAFT polymerization of monomers derived from renewable resources. Polym Chem 11:220–229

    Article  CAS  Google Scholar 

  20. Kutcherlapati SNR, Koyilapu R, Boddu UMR et al (2017) Glycopolymer-Grafted Nanoparticles: Synthesis Using RAFT Polymerization and Binding Study with Lectin. Macromolecules 50:7309–7320. https://doi.org/10.1021/acs.macromol.7b01265

    Article  CAS  Google Scholar 

  21. Dhara M, Rudra S, Mukherjee N, Jana T (2021) Hollow polymer nanocapsules with a ferrocenyl copolymer shell. Polym Chem 12:3976–3991. https://doi.org/10.1039/d1py00590a

    Article  CAS  Google Scholar 

  22. Rudra S, Dhara M, Chakraborty M, Jana T (2023) Fluorinated Polymer Brush-Grafted Silica Nanoparticles: Robust and Durable Self-Cleaning Coating Materials. ACS Appl Polym Mater 5:7443–7457. https://doi.org/10.1021/acsapm.3c01312

    Article  CAS  Google Scholar 

  23. Nothling MD, Fu Q, Reyhani A, et al (2020) Progress and Perspectives Beyond Traditional RAFT Polymerization. Advanced Science 7. https://doi.org/10.1002/advs.202001656

  24. Moad G, Chiefari J, Chong Bill YK et al (2000) Living free radical polymerization with reversible addition – fragmentation chain transfer (the life of RAFT). Polym Int 49:993–1001. https://doi.org/10.1002/1097-0126(200009)49:9%3c993::AID-PI506%3e3.0.CO;2-6

    Article  CAS  Google Scholar 

  25. Perrier S (2017) 50th Anniversary Perspective: RAFT Polymerization - A User Guide. Macromolecules 50:7433–7447

    Article  CAS  Google Scholar 

  26. Wang AR, Zhu S (2003) Effects of Diffusion-Controlled Radical Reactions on RAFT Polymerization. Macromol Theory Simul 12:196–208. https://doi.org/10.1002/mats.200390015

    Article  CAS  Google Scholar 

  27. Hahn C, Wagner M, Muller AH, Frey H (2022) MyrDOL, a Protected Dihydroxyfunctional Diene Monomer Derived from β-Myrcene: Functional Polydienes from Renewable Resources via Anionic Polymerization. Macromolecules 55:4046–4055. https://doi.org/10.1021/acs.macromol.2c00367

    Article  CAS  Google Scholar 

  28. Keddie DJ (2014) A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem Soc Rev 43:496–505

    Article  CAS  PubMed  Google Scholar 

  29. Keddie DJ, Moad G, Rizzardo E, Thang SH (2012) RAFT Agent Design and Synthesis. Macromolecules 45:5321–5342. https://doi.org/10.1021/ma300410v

    Article  CAS  Google Scholar 

  30. Moad G, Rizzardo E, Thang SH (2012) Living radical polymerization by the RAFT process a third update. In: Australian Journal of Chemistry. 985–1076

  31. Destarac M (2011) On the Critical Role of RAFT Agent Design in Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Polym Rev 51:163–187. https://doi.org/10.1080/15583724.2011.568130

    Article  CAS  Google Scholar 

  32. Chong BYK, Krstina J, Le TPT et al (2003) Thiocarbonylthio compounds [S=C(Ph)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R). Macromolecules 36:2256–2272. https://doi.org/10.1021/ma020882h

    Article  CAS  Google Scholar 

  33. Hinestrosa JP, Uhrig D, Pickel DL et al (2012) Hydrodynamics of polystyrene-polyisoprene miktoarm star copolymers in a selective and a non-selective solvent. Soft Matter 8:10061–10071. https://doi.org/10.1039/c2sm25882j

    Article  CAS  Google Scholar 

  34. Allorio S, Pispas S, Siakali-Kioulafa E, Hadjichristidis N (1995) Hydrodynamic behavior of anionically prepared linear polyisoprenes and polystyrenes in carbon tetrachloride. J Polym Sci B Polym Phys 33:2229–2234. https://doi.org/10.1002/polb.1995.090331607

    Article  CAS  Google Scholar 

  35. Flory PJ (1948) Effects of Cross-Linking and Branching on the Molecular Constitution of Diene Polymers. Rubber Chem Technol 21:461–470. https://doi.org/10.5254/1.3546927

    Article  Google Scholar 

  36. Arjunan V, Subramanian S, Mohan S (2001) Fourier transform infrared and Raman spectral analysis of trans-1,4-polyisoprene. Spectrochim Acta A Mol Biomol Spectrosc 57:2547–2554. https://doi.org/10.1016/S1386-1425(01)00426-7

    Article  CAS  PubMed  Google Scholar 

  37. Svatoš A, Attygalle BA (1997) Characterization of Vinyl-Substituted, Carbon−Carbon Double Bonds by GC/FT-IR Analysis. Anal Chem 69:1827–1836. https://doi.org/10.1021/ac960890u

    Article  PubMed  Google Scholar 

  38. Svatoš A, Attygalle AB (1997) Characterization of vinyl-substituted, carbon−carbon double bonds by GC/FT-IR analysis. Anal Chem 69:1827–1836. https://doi.org/10.1021/ac960890u

    Article  PubMed  Google Scholar 

  39. Tzourtzouklis I, Hahn C, Frey H, Floudas G (2022) Molecular Dynamics and Viscoelastic Properties of the Biobased 1,4-Polymyrcene. Macromolecules 55:8766–8775. https://doi.org/10.1021/acs.macromol.2c01507

    Article  CAS  Google Scholar 

  40. Georges S, Bria M, Zinck P, Visseaux M (2014) Polymyrcene microstructure revisited from precise high-field nuclear magnetic resonance analysis. Polymer (Guildf) 55:3869–3878. https://doi.org/10.1016/J.POLYMER.2014.06.021

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avila-Ortega Alejandro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uriel, CA., Cristian, CF., Gumersindo, ML. et al. Study on two different dithiobenzoates effectiveness in bulk RAFT polymerization of β-myrcene. J Polym Res 31, 194 (2024). https://doi.org/10.1007/s10965-024-04045-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-04045-w

Keywords

Navigation