Log in

Development of cornstarch-based shear thickening fluid and characterization of the effects of the addition of halloysite nanotubes-silica hybrid reinforcements

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work focuses on the development of cornstarch (CS)-based shear thickening fluid (STF) by adding halloysite nanotubes (HNTs)-silica hybrid suspensions to improve the intermolecular interations and rheological properties. CS is a potential candidate for high-impact energy absorption applications such as protective clothing, impact resistance, helmet, and energy dissipation. The CS was extracted from maize seeds by using amonium hydroxide, distilled water, and sodium hydroxide extraction techniques with the proper cleaning and milling processes. The concentrations (wt%) of HNTs (3, 5, 7, and 9), and silica (20, 25, and 30) suspensions were determined by using design of experiments (DoE). The STFs composites were homogenized by using ultra-sonication and magnetic stirring techniques to attain the required shear thickening properties. The molecular dynamics (MD) simulation was used to evaluate the molecular interactions. Furthermore, experimental characterizations using fourier transforms infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and rheological analysis were applied to fully investigate the STFs properties. The results obtained showed that the ammonium hydroxide extraction technique gave a significantly higher cornstarch yield. The molecular dynamics (MD) simulation results indicated that the addition of HNTs + silica particles leads to the formation of continuous molecular interactions and uniform distributions and reduced the formations of agglomerations. The TGA results showed that the CS degradation was reduced with high thermal stability when 5 wt.% of HNTs have been added. Furthermore, the addition of higher weight percentages of HNTs, and silica suspension particles increased the viscosity of the STF at lower shear rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qin J, Zhang G, Shi X (2017) Study of a shear thickening fluid: the suspensions of monodisperse polystyrene microspheres in polyethylene glycol. J Dispersion Sci Technol 38:935–942

    Article  CAS  Google Scholar 

  2. Baharvandi HR, Alebooyeh M, Alizadeh M, Heydari MS, Kordani N, Khaksari P (2016) The influences of particle–particle interaction and viscosity of carrier fluid on characteristics of silica and calcium carbonate suspensions-coated Twaron® composite. J Exp Nanosci 11:550–563

    Article  CAS  Google Scholar 

  3. Barnes H (1989) Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33:329–366

    Article  CAS  Google Scholar 

  4. Wagner NJ, Brady JF (2009) Shear thickening in colloidal dispersions. Phys Today 62:27–32

    Article  CAS  Google Scholar 

  5. Wen W, Huang X, Yang S, Lu K, Sheng P (2003) The giant electrorheological effect in suspensions of nanoparticles. Nat Mater 2:727–730

    Article  CAS  PubMed  Google Scholar 

  6. Brown E, Forman NA, Orellana CS, Zhang H, Maynor BW, Betts DE et al (2010) Generality of shear thickening in dense suspensions. Nat Mater 9:220–224

    Article  CAS  PubMed  Google Scholar 

  7. Liu M, Zhang S, Liu S, Cao S, Wang S, Bai L et al (2019) CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance. Compos A Appl Sci Manuf 126:105612

    Article  CAS  Google Scholar 

  8. Hu C, Liu J, Wu Y, West KR, Scherman OA (2018) Cucurbit [8] uril-regulated colloidal dispersions exhibiting photocontrolled rheological behavior. Small 14:1703352

    Article  Google Scholar 

  9. Liu K, Cheng C-F, Zhou L, Zou F, Liang W, Wang M et al (2019) A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries. J Power Sources 423:297–304

    Article  CAS  Google Scholar 

  10. Cao S, Pang H, Zhao C, Xuan S, Gong X (2020) The CNT/PSt-EA/Kevlar composite with excellent ballistic performance. Compos B Eng 185:107793

    Article  CAS  Google Scholar 

  11. Laun H, Bung R, Hess S, Loose W, Hess O, Hahn K et al (1992) Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow a. J Rheol 36:743–787

    Article  CAS  Google Scholar 

  12. Bender J, Wagner NJ (1996) Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol 40:899–916

    Article  CAS  Google Scholar 

  13. Bender JW, Wagner NJ (1995) Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J Colloid Interface Sci 172:171–184

    Article  CAS  Google Scholar 

  14. Lin NY, Guy BM, Hermes M, Ness C, Sun J, Poon WC et al (2015) Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys Rev Lett 115:228304

    Article  PubMed  Google Scholar 

  15. Brown E, Jaeger HM (2012) The role of dilation and confining stresses in shear thickening of dense suspensions. J Rheol 56:875–923

    Article  CAS  Google Scholar 

  16. Fang F, Tuncil YE, Luo X, Tong X, Hamaker BR, Campanella OH (2019) Shear-thickening behavior of gelatinized waxy starch dispersions promoted by the starch molecular characteristics. Int J Biol Macromol 121:120–126

    Article  CAS  PubMed  Google Scholar 

  17. Pinto F, Meo M (2017) Design and manufacturing of a novel shear thickening fluid composite (STFC) with enhanced out-of-plane properties and damage suppression. Appl Compos Mater 24:643–660

    Article  CAS  Google Scholar 

  18. Galindo-Rosales F, Martínez-Aranda S, Campo-Deaño L (2015) CorkSTFμfluidics–A novel concept for the development of eco-friendly light-weight energy absorbing composites. Mater Des 82:326–334

    Article  Google Scholar 

  19. Bischoff White EE, Chellamuthu M, Rothstein JP (2010) Extensional rheology of a shear-thickening cornstarch and water suspension. Rheologica acta 49:119–129

    Article  CAS  Google Scholar 

  20. Fall A, Huang N, Bertrand F, Ovarlez G, Bonn D (2008) Shear thickening of cornstarch suspensions as a reentrant jamming transition. Phys Rev Lett 100:018301

    Article  PubMed  Google Scholar 

  21. Brown E, Jaeger HM (2009) Dynamic jamming point for shear thickening suspensions. Phys Rev Lett 103:086001

    Article  PubMed  Google Scholar 

  22. Du M, Guo B, Lei Y, Liu M, Jia D (2008) Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance. Polymer 49:4871–4876

    Article  CAS  Google Scholar 

  23. Hasanzadeh M, Mottaghitalab V (2014) The role of shear-thickening fluids (STFs) in ballistic and stab-resistance improvement of flexible armor. J Mater Eng Perform 23:1182–1196

    Article  CAS  Google Scholar 

  24. Eberle AP, Baird DG, Wapperom P (2008) Rheology of non-Newtonian fluids containing glass fibers: A review of experimental literature. Ind Eng Chem Res 47:3470–3488

    Article  CAS  Google Scholar 

  25. Nawani P, Desai P, Lundwall M, Gelfer MY, Hsiao BS, Rafailovich M et al (2007) Polymer nanocomposites based on transition metal ion modified organoclays. Polymer 48:827–840

    Article  CAS  Google Scholar 

  26. Boersma WH, Laven J, Stein HN (1992) Viscoelastic properties of concentrated shear-thickening dispersions. J Colloid Interface Sci 149:10–22

    Article  CAS  Google Scholar 

  27. Maranzano BJ, Wagner NJ (2001) The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J Chem Phys 114:10514–10527

    Article  CAS  Google Scholar 

  28. Chu B, Salem DR (2017) Impact-induced solidlike behavior and elasticity in concentrated colloidal suspensions. Phys Rev E 96:042601

    Article  PubMed  Google Scholar 

  29. Smith M, Besseling R, Cates M, Bertola V (2010) Dilatancy in the flow and fracture of stretched colloidal suspensions. Nat Commun 1:1–5

    Article  Google Scholar 

  30. Vega D, Villar MA, Failla MD, Vallés EM (1996) Thermogravimetric analysis of starch-based biodegradable blends. Polym Bull 37:229–235

    Article  CAS  Google Scholar 

  31. Pineda-Gómez P, Coral DF, Ramos-Rivera D, Rosales-Rivera A, Rodríguez-García ME (2011) Thermo-alkaline treatment. A process that changes the thermal properties of corn starch. Procedia Food Science 1:370–378

    Article  Google Scholar 

  32. Williams TH, Day J, Pickard S (2009) Surgical and medical garments and materials incorporating shear thickening fluids. Ed: Google Patents

  33. Mawkhlieng U, Majumdar A (2019) Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics. Compos B Eng 175:107167

    Article  CAS  Google Scholar 

  34. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27:R713–R715

    Article  CAS  PubMed  Google Scholar 

  35. Sheikhi MR, Gürgen S (2022) Anti-impact design of multi-layer composites enhanced by shear thickening fluid. Compos Struct 279:114797

    Article  Google Scholar 

  36. Wei M, Sun L, Zhu J (2020) Effects of parameters controlling the impact resistance behavior of the GFRP fabric impregnated with a shear thickening fluid. Mater Des 196:109078

    Article  CAS  Google Scholar 

  37. Sun L, Wei M, Zhu J (2021) Low velocity impact performance of fiber-reinforced polymer impregnated with shear thickening fluid. Polym Testing 96:107095

    Article  CAS  Google Scholar 

  38. Wu X, Yin Q, Huang C, Zhong F (2017) Dynamic energy absorption behavior of lattice material filled with shear thickening fluid. Procedia engineering 199:2514–2518

    Article  Google Scholar 

  39. Hallett J, Fennell P, Gschwend F, Brandt-Talbot A, Kelsall G (2021) Process for the extraction of metal pollutants from treated cellulosic biomass. Ed: Google Patents

  40. Ji Y, Seetharaman K, White P (2004) Optimizing a small-scale corn-starch extraction method for use in the laboratory. Cereal Chem 81:55–58

    Article  CAS  Google Scholar 

  41. Mankarious RA, Radwan MA (2020) Shear thickening fluids comparative analysis composed of silica nanoparticles in polyethylene glycol and starch in water. J Nanotechnol 2020

  42. Sandhu KS, Singh N, Malhi NS (2005) Physicochemical and thermal properties of starches separated from corn produced from crosses of two germ pools. Food Chem 89:541–548

    Article  CAS  Google Scholar 

  43. Dokić L, Dapčević T, Krstonošić V, Dokić P, Hadnađev M (2010) Rheological characterization of corn starch isolated by alkali method. Food Hydrocolloids 24:172–177

    Article  Google Scholar 

  44. Xu Y, Chen X, Wang Y, Yuan Z (2017) Stabbing resistance of body armour panels impregnated with shear thickening fluid. Compos Struct 163:465–473

    Article  Google Scholar 

  45. Periyasamy S, Balaji J (2020) Analysis of impact energy absorption of kevlar and polyester composite impregnated with corn starch shear thickening fluid. Indian J Fibre Text Res (IJFTR) 45:80–89

    CAS  Google Scholar 

  46. Uddin F (2008) Clays, nanoclays, and montmorillonite minerals. Metall and Mater Trans A 39:2804–2814

    Article  Google Scholar 

  47. Liu X, Huo J-L, Li T-T, Peng H-K, Lin J-H, Lou C-W (2019) Investigation of the shear thickening fluid encapsulation in an orifice coagulation bath. Polymers 11:519

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chauhan V, Bhalla NA, Danish M (2021) Study of shear thickening behavior using experimental, mathematical modeling and numerical simulation studies. Mater Today Proc 44:756–763

    Article  Google Scholar 

  49. Manukonda BH, Chatterjee VA, Verma SK, Bhattacharjee D, Biswas I, Neogi S (2020) Rheology based design of shear thickening fluid for soft body armor applications. Periodica Polytech Chem Eng 64:75–84

    Article  CAS  Google Scholar 

  50. Hassan TA, Rangari VK, Jeelani S (2010) Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites. Mater Sci Eng A 527:2892–2899

    Article  Google Scholar 

  51. Liu X, Yu L, Liu H, Chen L, Li L (2009) Thermal decomposition of corn starch with different amylose/amylopectin ratios in open and sealed systems. Cereal Chem 86:383–385

    Article  CAS  Google Scholar 

  52. ARIK KIBAR EA, Us F (2014) Evaluation of structural properties of cellulose ether-corn starch based biodegradable films. Int J Polym Mater Polym Biomater 63:342–351

    Article  CAS  Google Scholar 

  53. Wetzel ED, Lee Y, Egres R, Kirkwood K, Kirkwood J, Wagner N (2004) The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)‐kevlar composites. AIP Conf Proc 288–293

  54. Lee B-W, Kim I-J, Kim C-G (2009) The influence of the particle size of silica on the ballistic performance of fabrics impregnated with silica colloidal suspension. J Compos Mater 43:2679–2698

    Article  CAS  Google Scholar 

  55. Allen MP (2004) Introduction to molecular dynamics simulation. Comput Soft Matter: Synth Polym Proteins 23:1–28

    Google Scholar 

  56. Accelrys I (2010) Materials studio accelrys software inc. San Diego

  57. Purse M, Edmund G, Hall S, Howlin B, Hamerton I, Till S (2019) Reactive molecular dynamics study of the thermal decomposition of phenolic resins. J Compos Sci 3:32

    Article  CAS  Google Scholar 

  58. De Lorenzo L, Tocci E, Gugliuzza A, Drioli E (2012) Pure and modified co-poly (amide-12-b-ethylene oxide) membranes for gas separation studied by molecular investigations. Membranes 2:346–366

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rappé AK, Casewit CJ, Colwell K, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  60. Golzar K, Amjad-Iranagh S, Amani M, Modarress H (2014) Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes. J Membr Sci 451:117–134

    Article  CAS  Google Scholar 

  61. Rao Z, Wang S, Peng F (2013) Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials. Int J Heat Mass Transf 66:575–584

    Article  CAS  Google Scholar 

  62. Hu H, Weinberger CR, Sun Y (2014) Effect of nanostructures on the meniscus shape and disjoining pressure of ultrathin liquid film. Nano Lett 14:7131–7137

    Article  CAS  PubMed  Google Scholar 

  63. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  64. Shuichi N (1991) Constant temperature molecular dynamics methods. Prog Theor Phys Suppl 103:1–46

    Article  Google Scholar 

  65. Ferrante F, Armata N, Lazzara G (2015) Modeling of the halloysite spiral nanotube. J Phys Chem C 119:16700–16707

    Article  CAS  Google Scholar 

  66. Guy B, Hermes M, Poon WC (2015) Towards a unified description of the rheology of hard-particle suspensions. Phys Rev Lett 115:088304

    Article  CAS  PubMed  Google Scholar 

  67. Moriana AD, Tian T, Sencadas V, Li W (2016) Comparison of rheological behaviors with fumed silica-based shear thickening fluids. Korea-Aust Rheol J 28:197–205

    Article  Google Scholar 

  68. Raghavan SR, Walls HJ, Khan SA (2000) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir 16:7920–7930

    Article  CAS  Google Scholar 

  69. Foss DR, Brady JF (2000) Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation. J Fluid Mech 407:167–200

    Article  CAS  Google Scholar 

  70. Küçüksönmez E, Servantie J (2020) Shear thinning and thickening in dispersions of spherical nanoparticles. Phys Rev E 102:012604

    Article  PubMed  Google Scholar 

  71. Boersma WH, Laven J, Stein HN (1995) Computer simulations of shear thickening of concentrated dispersions. J Rheol 39:841–860

    Article  CAS  Google Scholar 

  72. Boersma WH, Laven J, Stein HN (1990) Shear thickening (dilatancy) in concentrated dispersions. AIChE J 36:321–332

    Article  CAS  Google Scholar 

  73. Saraloğlu Güler E (2018) Rheological behaviours of silica/water, silica/PEG systems and mechanical properties of shear thickening fluid impregnated Kevlar composites. Bull Mater Sci 41:1–8

    Article  Google Scholar 

  74. Chami Khazraji A, Robert S (2013) Self-assembly and intermolecular forces when cellulose and water interact using molecular modeling. J Nanomater 2013:1–12

    Google Scholar 

  75. Yu K, Cao H, Qian K, Sha X, Chen Y (2012) Shear-thickening behavior of modified silica nanoparticles in polyethylene glycol. J Nanopart Res 14:1–9

    Article  CAS  Google Scholar 

  76. Mewis J, Wagner JN (2012) Colloidal suspension rheology. Cambridge university press

  77. Ahmad T, Mamat O, Ahmad R (2013) Studying the effects of adding silica sand nanoparticles on epoxy based composites. J Nanopart 2013

  78. Kim S, Lee J, Park C, Sain M (2010) Enhancing cell nucleation of thermoplastic polyolefin foam blown with nitrogen. J Appl Polym Sci 118:1691–1703

    Article  CAS  Google Scholar 

  79. Salehi M, Rezaei M, Salami Hosseini M (2021) Effect of silica nanoparticles on the impregnation process, foaming dynamics and cell microstructure of styrene-methyl methacrylate copolymer/n-pentane foams. J Cell Plast 57:75–100

    Article  CAS  Google Scholar 

  80. Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 89:256–264

    Article  CAS  PubMed  Google Scholar 

  81. Abdullah A, Chalimah S, Primadona I, Hanantyo M (2018) Physical and chemical properties of corn, cassava, and potato starchs.IOP Conf Ser: Earth Environ Sci 012003

  82. Raman V, Rooj S, Das A, Stöckelhuber K, Simon F, Nando G et al (2013) Reinforcement of solution styrene butadiene rubber by silane functionalized halloysite nanotubes. J Macromol Sci Part A 50:1091–1106

    Article  CAS  Google Scholar 

  83. Yuan P, Southon PD, Liu Z, Green ME, Hook JM, Antill SJ et al (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751

    Article  CAS  Google Scholar 

  84. Aggarwal P, Dollimore D (1998) A thermal analysis investigation of partially hydrolyzed starch. Thermochim Acta 319:17–25

    Article  CAS  Google Scholar 

  85. Soares R, Lima A, Oliveira R, Pires A, Soldi V (2005) Thermal degradation of biodegradable edible films based on xanthan and starches from different sources. Polym Degrad Stab 90:449–454

    Article  CAS  Google Scholar 

  86. Liu X, Yu L, Liu H, Chen L, Li L (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stab 93:260–262

    Article  CAS  Google Scholar 

  87. Palanisamy CP, Cui B, Zhang H, Jayaraman S, Kodiveri Muthukaliannan G (2020) A comprehensive review on corn starch-based nanomaterials: Properties, simulations, and applications. Polymers 12:2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Al-Olayan AM, Alexander-Katz A (2017) New shear thickening dilatancy dispersion based on nano-silica beads for Oilfield applications. Abu Dhabi Int Pet Exhib Conf

  89. Waitukaitis SR, Jaeger HM (2012) Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 487:205–209

    Article  CAS  PubMed  Google Scholar 

  90. Hermes M, Guy BM, Poon WC, Poy G, Cates ME, Wyart M (2016) Unsteady flow and particle migration in dense, non-Brownian suspensions. J Rheol 60:905–916

    Article  CAS  Google Scholar 

  91. James NM, Han E, de la Cruz RAL, Jureller J, Jaeger HM (2018) Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat Mater 17:965–970

    Article  CAS  PubMed  Google Scholar 

  92. Wei M, Sun L, Zhang C, Qi P, Zhu J (2019) Shear-thickening performance of suspensions of mixed ceria and silica nanoparticles. J Mater Sci 54:346–355

    Article  CAS  Google Scholar 

  93. Gürgen S, Li W, Kuşhan MC (2016) The rheology of shear thickening fluids with various ceramic particle additives. Mater Des 104:312–319

    Article  Google Scholar 

  94. Sun L, Lv Y, Wei M, Sun H, Zhu J (2020) Shear thickening fluid based on silica with neodymium oxide nanoparticles. Bull Mater Sci 43:1–6

    Article  Google Scholar 

  95. Tian T, Peng G, Li W, Ding J, Nakano M (2015) Experimental and modelling study of the effect of temperature on shear thickening fluids. Korea-Aust Rheol J 27:17–24

    Article  Google Scholar 

  96. Gürgen S, Kuşhan MC, Li W (2016) The effect of carbide particle additives on rheology of shear thickening fluids. Korea-Aust Rheol J 28:121–128

    Article  Google Scholar 

  97. Fahool M, Sabet AR (2016) Parametric study of energy absorption mechanism in Twaron fabric impregnated with a shear thickening fluid. Int J Impact Eng 90:61–71

    Article  Google Scholar 

  98. Chen Q, Zhu W, Ye F, Gong X, Jiang W, Xuan S (2014) pH effects on shear thickening behaviors of polystyrene-ethylacrylate colloidal dispersions. Mater Res Express 1:015303

    Article  CAS  Google Scholar 

  99. Qin J, Zhang G, Ma Z, Li J, Zhou L, Shi X (2016) Effects of ionic structures on shear thickening fluids composed of ionic liquids and silica nanoparticles. RSC Adv 6:81913–81923

    Article  CAS  Google Scholar 

  100. Qin J, Zhang G, Shi X (2016) Viscoelasticity of shear thickening fluid based on silica nanoparticles dispersing in 1-butyl-3-methylimidizolium tetrafluoroborate. J Dispersion Sci Technol 37:1599–1606

    Article  CAS  Google Scholar 

Download references

Funding

No funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

Tibebu Merde Zelelew: Contributed on the conceptualization, data processing, write-up, and reviewing; Addisu Negash Ali contributed on the conceptualization, write-up, editing, and supervision; Ermias Gebrekidan Koricho contributed on the conceptualization, and supervision.

Corresponding authors

Correspondence to Addisu Negash Ali or Ermias Gebrekidan Koricho.

Ethics declarations

Competing interest

The authors declare that there are no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelelew, T.M., Ali, A.N. & Koricho, E.G. Development of cornstarch-based shear thickening fluid and characterization of the effects of the addition of halloysite nanotubes-silica hybrid reinforcements. J Polym Res 30, 433 (2023). https://doi.org/10.1007/s10965-023-03792-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03792-6

Keywords

Navigation