Log in

Preparation of PDMS STEM gels through oxygen tolerance nitroxide mediated polymerization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The postsynthesis polymeric modifications by grafting from the active sites were the primary focus of the structurally tailored and engineered macromolecular (STEM) gels. Therefore, Reversible-deactivation radical polymerization (RDRP) techniques have been employed to more precisely tailor and tune STEM gels. In contrast to atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer polymerization (RAFT), nitroxide-mediated polymerization (NMP) is known to have the advantages of simple components and pure products. Here we report the preparation of polydimethylsiloxane (PDMS) composite gel networks through oxygen tolerance NMP process, with tert-Butyl acrylate (tBA) and fluorinated monomer 2-(Perfluorooctyl)ethyl methacrylate (FMA) as functional comonomers. Compared with conventional radical polymerization (FRP) method, composite gels prepared through NMP method showed higher swelling rate and elongation at break, which proved that the network structure formed by NMP was more uniform. In addition to better thermal stability and toughness, the dormant polymer chain could be reactivated and lead to the “living” post-modification of PDMS gel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao H, Matyjaszewski K (2009) Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog Polym Sci 34(4):317–350

    Article  CAS  Google Scholar 

  2. Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C (2020) Reversible-deactivation radical polymerization (Controlled/living radical polymerization): from discovery to materials design and applications. Prog Polym Sci 111:101311

    Article  CAS  Google Scholar 

  3. Qiu J, Charleux B, Matyjaszewski K (2001) Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Prog Polym Sci 26(10):2083–2134

    Article  CAS  Google Scholar 

  4. Zetterlund PB, Thickett SC, Perrier S, Bourgeat-Lami E, Lansalot M (2015) Controlled/Living Radical Polymerization in Dispersed Systems: An Update Chem Rev 115(18):9745–9800

    CAS  PubMed  Google Scholar 

  5. Bagheri A, Fellows CM, Boyer C (2021) Reversible Deactivation Radical polymerization: from Polymer Network synthesis to 3D Printing. Adv Sci 8(5):2003701

    Article  CAS  Google Scholar 

  6. Bainbridge CWA, Wangsadijaya A, Broderick N, ** J (2022) Living polymer networks prepared by controlled radical polymerization techniques. Polym Chem 13(11):1484–1494

    Article  CAS  Google Scholar 

  7. Cuthbert J, Wanasinghe SV, Matyjaszewski K, Konkolewicz D (2021) Are RAFT and ATRP universally interchangeable polymerization methods in network formation? Macromolecules 54(18):8331–8340

    Article  CAS  Google Scholar 

  8. Cuthbert J, Zhang T, Biswas S, Olszewski M, Shanmugam S, Fu T, Gottlieb E, Kowalewski T, Balazs AC, Matyjaszewski K (2018) Structurally Tailored and Engineered Macromolecular (STEM) Gels as Soft Elastomers and Hard/Soft Interfaces. Macromolecules 51(22):9184–9191

    Article  CAS  Google Scholar 

  9. Cuthbert J, Beziau A, Gottlieb E, Fu L, Yuan R, Balazs AC, Kowalewski T, Matyjaszewski K (2018) Transformable materials: structurally tailored and Engineered Macromolecular (STEM) gels by controlled radical polymerization. Macromolecules 51(10):3808–3817

    Article  CAS  Google Scholar 

  10. Cuthbert J, Balazs AC, Kowalewski T, Matyjaszewski K (2020) STEM gels by controlled radical polymerization. Trends Chem 2(4):341–353

    Article  CAS  Google Scholar 

  11. Gao H, Min K, Matyjaszewski K (2007) Determination of gel point during atom transfer Radical Copolymerization with Cross-Linker. Macromolecules 40(22):7763–7770

    Article  CAS  Google Scholar 

  12. Gao H, Li W, Matyjaszewski K (2008) Synthesis of Polyacrylate Networks by ATRP: parameters influencing experimental gel points. Macromolecules 41(7):2335–2340

    Article  CAS  Google Scholar 

  13. Ida S, Kimura R, Tanimoto S, Hirokawa Y (2017) End-crosslinking of controlled telechelic poly(N-isopropylacrylamide) toward a homogeneous gel network with photo-induced self-healing. Polym J 49(2):237–243

    Article  CAS  Google Scholar 

  14. Liu Q, Zhang P, Qing A, Lan Y, Lu M (2006) Poly(N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization. Polymer 47(7):2330–2336

    Article  CAS  Google Scholar 

  15. Ide N, Fukuda T (1999) Nitroxide-Controlled free-radical copolymerization of Vinyl and Divinyl Monomers. 2. Gelation. Macromolecules 32(1):95–99

    Article  CAS  Google Scholar 

  16. Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog Polym Sci 38(1):63–235

    Article  CAS  Google Scholar 

  17. Guegain E, Guillaneuf Y, Nicolas J (2015) Nitroxide-mediated polymerization of Methacrylic Esters: insights and solutions to a Long-Standing Problem. Macromol Rapid Comm 36:1227–1247

    Article  CAS  Google Scholar 

  18. Grubbs RB (2011) Nitroxide-mediated radical polymerization: Limitations and Versatility. Polym Rev 51(2):104–137

    Article  CAS  Google Scholar 

  19. Cunningham MF (2003) Recent progress in nitroxide-mediated polymerizations in miniemulsion. C R Chim 6(11):1351–1374

    Article  CAS  Google Scholar 

  20. Lamontagne HR, Lessard BH, Polymerization N-M (2020) A Versatile Tool for the Engineering of Next Generation materials. Acs Appl Polym Mater 2(12):5327–5344

    Article  CAS  Google Scholar 

  21. Bertin D, Gigmes D, Marque SRA, Tordo P (2011) Kinetic subtleties of nitroxide mediated polymerization. Chem Soc Rev 40(5):2189–2198

    Article  CAS  PubMed  Google Scholar 

  22. Georges MK, Veregin RP, Kazmaier PM, Hamer GK (1993) Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 26(11):2987–2988

    Article  CAS  Google Scholar 

  23. Georges MK, Veregin RP, Kazmaier PM, Hamer GK, Saban M (1994) Narrow polydispersity polystyrene by a free-radical polymerization process-rate enhancement. Macromolecules 27(24):7228–7229

    Article  CAS  Google Scholar 

  24. Greszta D, Matyjaszewski K (1996) Mechanism of Controlled/“Living” radical polymerization of styrene in the presence of nitroxyl radicals. Kinetics and simulations. Macromolecules 29(24):7661–7670

    CAS  Google Scholar 

  25. Benoit D, Chaplinski V, Braslau R, Hawker CJ (1999) Development of a universal alkoxyamine for “living” free radical polymerizations. J Am Chem Soc 121(16):3904–3920

    Article  CAS  Google Scholar 

  26. Lohmeijer BGG, Schubert US (2005) The LEGO toolbox: supramolecular building blocks by nitroxide-mediated controlled radical polymerization. J Polym Sci Part A: Polym Chem 43(24):6331–6344

    Article  CAS  Google Scholar 

  27. Maria S, Susha AS, Sommer M, Talapin DV, Rogach AL, Thelakkat M (2008) Semiconductor block copolymer nanocomposites with lamellar morphology via self-organization. Macromolecules 41(16):6081–6088

    Article  CAS  Google Scholar 

  28. Montaudo MS, Puglisi C, Battiato S, Zappia S, Destri S, Samperi F (2019) An innovative approach for the chemical structural characterization of poly(styrene 4-vinylpyridine) copolymers by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J Appl Polym Sci 136(3):46976

    Article  Google Scholar 

  29. Diaz T, Fischer A, Jonquieres A, Brembilla A, Lochon P (2003) Controlled polymerization of functional monomers and synthesis of block copolymers using a β-phosphonylated nitroxide. Macromolecules 36(7):2235–2241

    Article  CAS  Google Scholar 

  30. Lessard BH, Marić M (2012) Optimization of 4-vinylpyridine nitroxide mediated controlled radical polymerization: effect of initiator protection and complexation with C60. E-Polymers 12

  31. Rahim NA, Audouin F, Twamley B, Vos JG, Heise A (2012) Synthesis of poly(4-vinyl pyridine-b-methyl methacrylate) by MAMA-SG1 initiated sequential polymerization and formation of metal loaded block copolymer inverse micelles. Eur Polym J 48(5):990–996

    Article  CAS  Google Scholar 

  32. Poláková L, Lokaj J, Holler P, Starovoytova L, Pekárek M, Štěpánek P (2010) Synthesis and quaternization of nitroxide-terminated poly(4-vinylpyridine-co-acrylonitrile) macroinitiators and related diblock copolymers. E-Polymers 10

  33. Benoit D, Grimaldi S, Robin S, Finet JP, Tordo P, Gnanou Y (2000) Kinetics and mechanism of controlled free-radical polymerization of styrene and n-butyl acrylate in the presence of an acyclic β-phosphonylated nitroxide. J Am Chem Soc 122(25):5929–5939

    Article  CAS  Google Scholar 

  34. Ballard N, Aguirre M, Simula A, Agirre A, Leiza JR, Asua JM, van Es S (2016) New class of alkoxyamines for efficient controlled homopolymerization of methacrylates. ACS Macro Lett 5:1019

    Article  CAS  PubMed  Google Scholar 

  35. Ballard N, Simula A, Aguirre M, Leiza JR, van Es S, Asua JM (2016) Synthesis of poly(methyl methacrylate) and block copolymers by semi-batch nitroxide mediated polymerization. Polym Chem 7(45):6964–6972

    Article  CAS  Google Scholar 

  36. Ma H, Wang L, Liang Y, Cui Z, Fu P, Liu M, Qiao X, Pang X (2021) Novel tetraphenylethylene (TPE)-functionalized nitroxide/alkoxyamine for nitroxide-mediated homogeneous and heterogeneous polymerizations. Polym Chem 12(4):526–533

    Article  CAS  Google Scholar 

  37. Ballard N, Aguirre M, Simula A, Leiza JR, van Es S, Asua JM (2017) High solids content nitroxide mediated miniemulsion polymerization of n-butyl methacrylate. Polym Chem 8(10):1628–1635

    Article  CAS  Google Scholar 

  38. Mehravar E, Agirre A, Ballard N, van Es S, Arbe A, Leiza JR, Asua JM (2018) Insights into the Network Structure of Cross-Linked Polymers Synthesized via Miniemulsion Nitroxide-Mediated Radical Polymerization. Macromolecules 51(23):9740–9748

    Article  CAS  Google Scholar 

  39. Jia Y, Matt Y, An Q, Wessely I, Mutlu H, Theato P, Braese S, Llevot A, Tsotsalas M (2020) Dynamic covalent polymer networks via combined nitroxide exchange reaction and nitroxide mediated polymerization. Polym Chem 11(14):2502–2510

    Article  CAS  Google Scholar 

  40. Scott AJ, Nabifar A, Hernandez-Ortiz JC, McManus NT, Vivaldo-Lima E (2014) A.Penlidis, Crosslinking nitroxide-mediated radical copolymerization of styrene with divinylbenzene. Eur Polymer J 51:87–111

    Article  CAS  Google Scholar 

  41. Hamzehlou S, Reyes Y, Leiza JR (2016) Quantitative study on the homogeneity of networks synthesized by nitroxide-mediated radical copolymerization of styrene and divinylbenzene. Eur Polymer J 85:244–255

    Article  CAS  Google Scholar 

  42. Hernandez-Ortiz JC, Vivaldo-Lima E, Lona LMF, McManus NT, Penlidis A (2009) Modeling of the nitroxide-mediated radical copolymerization of Styrene and Divinylbenzene. Macromol React Eng 3(5):288–311

    Article  CAS  Google Scholar 

  43. Jaramillo-Soto G, Sarracino-Silva SA, Vivaldo-Lima E (2022) Kinetics of Polymer Network Formation by Nitroxide-Mediated Radical Copolymerization of Styrene/Divinylbenzene in Supercritical Carbon Dioxide, Processes. 10(11)

  44. Dong X, Wang L, He Y, Cui Z, Fu P, Liu M, Qiao X, Shi G, Pang X (2021) Simple and robust nitroxide-mediated polymerization with oxygen tolerance. Polym Chem 12(48):7010–7015

    Article  CAS  Google Scholar 

  45. Mata A, Fleischman AJ, Roy S (2005) Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 7(4):281–293

    Article  CAS  PubMed  Google Scholar 

  46. Yilgör E, Yilgör I (2014) Silicone containing copolymers: synthesis, properties and applications. Prog Polym Sci 39(6):1165–1195

    Article  Google Scholar 

  47. Si Z, Li J, Ma L, Cai D, Li S, Baeyens J, Degreve J, Nie J, Tan T, Qin P (2019) The Ultrafast and continuous fabrication of a polydimethylsiloxane membrane by Ultraviolet-Induced polymerization. Angew Chem Int Ed 58(48):17175–17179

    Article  CAS  Google Scholar 

  48. Zhuang L, Huo Z, Shi G, He Y, Cui Z, Fu P, Liu M, Qiao X, Fan W, Pang X (2022) Continuous Preparation of homogeneous crosslinked PDMS microgel particles through Photoinduced reversible addition-fragmentation chain transfer polymerization. ACS Appl Polym Mater 4(6):4347–4354

    Article  CAS  Google Scholar 

  49. Goto A, Fukuda T (1999) Kinetic study on nitroxide-mediated free radical polymerization of tert-butyl acrylate. Macromolecules 32(3):618–623

    Article  CAS  Google Scholar 

  50. Ruehl J, Hill NL, Walter ED, Milihauser G, Braslau R (2008) A proximal bisnitroxide initiator: studies in low-temperature nitroxide-mediated polymerizations. Macromolecules 41(6):1972–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rabnawaz M, Liu G (2014) Triblock Terpolymers Bearing a Redox-Cleavable Junction and a photo-cross-linkable block. Macromolecules 47(15):5115–5123

    Article  CAS  Google Scholar 

  52. **ong D, Liu GJ, Hong LZ, Duncan EJS (2011) Superamphiphobic diblock copolymer coatings. Chem Mater 23(19):4357–4366

    CAS  Google Scholar 

  53. Grozea CM, Rabnawaz M, Liu GJ, Zhang GW (2015) Coating of silica particles by fluorinated diblock copolymers and use of the resultant silica for superamphiphobic surfaces. Polymer 64:153–162

    Article  CAS  Google Scholar 

  54. Belqat M, Wu X, Morris J, Mougin K, Petithory T, Pieuchot L, Guillaneuf Y, Gigmes D, Clément J-L, Spangenberg A (2023) Customizable and reconfigurable Surface Properties of printed micro-objects by 3D direct laser writing via Nitroxide mediated photopolymerization. Adv Funct Mater 2211971

  55. Telitel S, Morris JC, Guillaneuf Y, Clément J, Morlet-Savary F, Spangenberg A, Malval JP, Lalevée J, Gigmes D, Soppera O (2020) Laser Direct writing of arbitrary complex polymer microstructures by nitroxide-mediated photopolymerization. ACS Appl Mater Interfaces 12(27):30779–30786

    Article  CAS  PubMed  Google Scholar 

  56. Chu NT, Chakravarthy RD, Shih NC, Lin YH, Liu YC, Lin JH, Lin HC (2018) Fluorescent supramolecular hydrogels self-assembled from tetraphenylethene (TPE)/single amino acid conjugates. RSC Adv 8(37):20922–20927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu SJ, Cheng YH, Zhang HK, Qiu ZJ, Kwok RTK, Lam JWY, Tang BZ (2018) Situ monitoring of RAFT polymerization by Tetraphenylethylene-Containing Agents with Aggregation-Induced Emission characteristics. Angew Chem Int Ed 57(21):6274–6278

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (Grant No.51973201, U1804128, to **nchang Pang; Grant No.52173209, to Yanjie He), the National Science Foundation for Young Scientists of China (Grant No. 22105179, to Ge Shi) and Scientific & technological research projects in Henan Province (222102520009, to **aoguang Qiao) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aoguang Qiao or **nchang Pang.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 822 kb)

Supplementary file2 (DOCX 79 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, X., Dong, X., shi, G. et al. Preparation of PDMS STEM gels through oxygen tolerance nitroxide mediated polymerization. J Polym Res 30, 370 (2023). https://doi.org/10.1007/s10965-023-03732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03732-4

Keywords

Navigation