Log in

Dual-responsive polymers synthesized via RAFT polymerization for controlled demulsification and desorption

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Intelligent polymers responsive to the environment have aroused widespread interest in many applications of materials and interfaces. However, sensitive control of the oil-water interface remains a major challenge, using reversible self-assembly of macromolecules induced by external stimuli. Here, we synthesized a new amphiphilic triblock copolymer responsive to pH and UV light via reversible addition–fragmentation chain transfer (RAFT) aqueous polymerization. Poly(methacrylic acid) (PMAA) acts as the hydrophilic block; poly(N, N-dimethyl aminoethyl methacrylate) (PDMAEMA) and poly(methacrylamide azobenzene) (PMAAAB) are the hydrophobic blocks with responsiveness. The as-synthesized polymer was measured regarding UV–vis transmittance and contact angle to verify the tunable amphiphilicity and wettability by the double stimulation. The newly developed dual-responsive polymer was applied for oil/water separation and controlled dye release, where methylene red (MR) was chosen as the representative adsorbate. With the synergic stimulation of pH and UV light, efficient separation for oil-in-water emulsions (separation efficiency: 66.8% in 15 min) and excellent desorption for adsorbed dyes (desorption efficiency: 93.8% in 15 min) are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data will be available on request.

References

  1. Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A (2021) pH-sensitive polymers: classification and some fine potential applications. Polym Adv Technol 32(4):1455–1484. https://doi.org/10.1002/pat.5230

    Article  CAS  Google Scholar 

  2. Musarurwa H, Tavengwa NT (2022) Recent progress in the application of PH-Responsive polymers in separation science. Microchem J 179:107503. https://doi.org/10.1016/j.microc.2022.107503

    Article  CAS  Google Scholar 

  3. Mai BT, Fernandes S, Balakrishnan PB, Pellegrino T (2018) Nanosystems based on magnetic nanoparticles and Thermo- or PH-Responsive Polymers: an update and future perspectives. Acc Chem Res 51(5):999–1013. https://doi.org/10.1021/acs.accounts.7b00549

    Article  CAS  PubMed  Google Scholar 

  4. Cunningham MF, Jessop PG (2019) Carbon dioxide-switchable polymers: where are the future opportunities? Macromolecules 52(18):6801–6816. https://doi.org/10.1021/acs.macromol.9b00914

    Article  CAS  Google Scholar 

  5. ACS Applied Materials & Interfaces (2022). https://doi.org/10.1021/acsami.2c19037

  6. Selianitis D, Pispas S (2021) P(MMA-co-HPMA)-b-POEGMA copolymers: synthesis, micelle formation in aqueous media and drug encapsulation. Polym Int 70(10):1508–1522. https://doi.org/10.1002/pi.6229

    Article  CAS  Google Scholar 

  7. McBride RJ, Miller JF, Blanazs A, Hähnle H-J, Armes SP (2022) Synthesis of high Molecular Weight Water-Soluble Polymers as low-viscosity latex particles by RAFT aqueous dispersion polymerization in highly salty media. Macromolecules 55(17):7380–7391. https://doi.org/10.1021/acs.macromol.2c01071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang T, Wang C, Ma H, Yu F, **a S, Han Y (2023) Preparation of Temperature-Sensitive SiO2-PSBMA for Reducing the Viscosity of Heavy Oil. Energy Fuels. https://doi.org/10.1021/acs.energyfuels.2c03650

    Article  Google Scholar 

  9. Arredondo J, Woodcock NM, Garcia-Valdez O, Jessop PG, Champagne P, Cunningham MF (2020) Surface modification of cellulose nanocrystals via RAFT polymerization of CO2-Responsive monomer-tuning hydrophobicity. Langmuir 36(46):13989–13997. https://doi.org/10.1021/acs.langmuir.0c02509

    Article  CAS  PubMed  Google Scholar 

  10. Ge X, Mo L, Yu A, Tian C, Wang X, Yang C, Qiu T (2022) Stimuli-Responsive Emulsions: recent advances and potential applications. Chin J Chem Eng 41:193–209. https://doi.org/10.1016/j.cjche.2021.11.002

    Article  CAS  Google Scholar 

  11. ** H, Jessop PG, Cunningham MF (2022) CO2-Switchable PMMA latexes with controllable particle size prepared by surfactant-free emulsion polymerization. Colloid Polym Sci 300(4):375–385. https://doi.org/10.1007/s00396-022-04953-7

    Article  CAS  Google Scholar 

  12. Hu L, Wang Y, Yin Q, Du K, Yin Q (2019) Multiple morphologies of a poly(methyl methacrylate)-block-poly(N,N-dimethyl aminoethyl methacrylate) copolymer with pH-responsiveness and thermoresponsiveness. J Appl Polym Sci 136(38):47972. https://doi.org/10.1002/app.47972

    Article  CAS  Google Scholar 

  13. Shieh Y-T, Yeh Y-C, Cheng C-C (2019) Multistimuli-Responsive Emulsifiers based on two-way amphiphilic diblock polymers. ACS Omega 4(13):15479–15487. https://doi.org/10.1021/acsomega.9b01728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramezanpour M, Shirin-Abadi AR (2021) Emulsion polymerization using three types of RAFT prepared well-defined polymeric Stabilizers based on 2-Dimethylaminoethyl methacrylate (DMAEMA) under CO2 atmosphere: a comparative study. J Polym Res 28(7). https://doi.org/10.1007/s10965-021-02619-6

  15. Yang Z, Chen S, Fu K, Liu X, Li F, Du Y, Zhou P, Cheng Z (2018) Highly efficient adsorbent for Organic Dyes based on a temperature- and PH-Responsive Multiblock Polymer. J Appl Polym Sci 135(34):46626. https://doi.org/10.1002/app.46626

    Article  CAS  Google Scholar 

  16. Huang W, Si H, Qing Y, Zhang L, Zhang W, Song F, Ni X, Yang WA, Magnetic (2021) Core–Shell Structured, PH-Responsive molecularly imprinted polymers for the selective detection of Sulfamethoxazole. J Inorg Organomet Polym Mater 31(5):2054–2062. https://doi.org/10.1007/s10904-021-01893-7

    Article  CAS  Google Scholar 

  17. Zhang X, Han L, Liu M, Wang K, Tao L, Wan Q, Wei Y (2017) Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Mater Chem Front 1(5):807–822. https://doi.org/10.1039/c6qm00135a

    Article  CAS  Google Scholar 

  18. Quinn JF, Whittaker MR, Davis TP (2017) Glutathione responsive polymers and their application in Drug Delivery Systems. Polym Chem 8(1):97–126. https://doi.org/10.1039/c6py01365a

    Article  CAS  Google Scholar 

  19. Bertrand O, Gohy J-F (2017) Photo-Responsive P. Polym Chem 8(1):52–73. https://doi.org/10.1039/c6py01082b

    Article  CAS  Google Scholar 

  20. Yang R, Liu Y, Chen J, Zhu W, Dong G (2019) Photo-responsive Block Copolymer Containing Azobenzene Group: synthesis by reversible addition‐fragmentation chain transfer polymerization and characterization. J Appl Polym Sci 136(33):47870. https://doi.org/10.1002/app.47870

    Article  CAS  Google Scholar 

  21. Guo M, Yan Y, Zhang H, Yan H, Cao Y, Liu K, Wan S, Huang J, Yue W (2008) Magnetic and PH-Responsive Nanocarriers with Multilayer Core–Shell Architecture for Anticancer Drug Delivery. J Mater Chem 18(42):5104. https://doi.org/10.1039/b810061f

    Article  CAS  Google Scholar 

  22. Zhou L, Yuan J, Yuan W, Sui X, Wu S, Li Z, Shen D (2009) Synthesis, characterization, and Controllable Drug Release of PH-Sensitive Hybrid magnetic nanoparticles. J Magn Magn Mater 321(18):2799–2804. https://doi.org/10.1016/j.jmmm.2009.04.020

    Article  CAS  Google Scholar 

  23. Larik FA, Fillbrook LL, Nurttila SS, Martin AD, Kuchel RP, Taief KA, Bhadbhade M, Beves JE, Thordarson P (2021) Ultra-Low Molecular Weight Photoswitchable Hydrogelators. Angew Chem Int Ed 60(12):6764–6770. https://doi.org/10.1002/anie.202015703

    Article  CAS  Google Scholar 

  24. Wang D-C, Yang X, Yu H-Y, Gu J, Qi D, Yao J, Ni Q (2020) Smart Nonwoven Fabric with Reversibly Dual-Stimuli Responsive Wettability for Intelligent Oil-Water separation and pollutants removal. J Hazard Mater 383:121123. https://doi.org/10.1016/j.jhazmat.2019.121123

    Article  CAS  PubMed  Google Scholar 

  25. Hosseini ZS, Abdollahi A, Dashti A, Matin MM, Afkhami-Poostchi A (2022) Synthesis of Tertiary Amine Functionalized Multi-Stimuli-Responsive latex nanoparticles by Semicontinuous Emulsion polymerization: investigation of responsivities and antimicrobial activity. J Mol Liq 352:118697. https://doi.org/10.1016/j.molliq.2022.118697

    Article  CAS  Google Scholar 

  26. Nivaggioli T, Alexandridis P, Hatton TA, Yekta A, Winnik MA (1995) Fluorescence probe studies of pluronic copolymer solutions as a function of temperature. Langmuir 11(3):730–737. https://doi.org/10.1021/la00003a011

    Article  CAS  Google Scholar 

  27. Ma H, **a S, Li N, Wang T, Zheng W, Yu T, Shu Q, Han Y (2022) Emulsifying Stability and Viscosity reduction for heavy crude oil in surfactant-polymer Composite System. J Mol Liq 362:119713. https://doi.org/10.1016/j.molliq.2022.119713

    Article  CAS  Google Scholar 

  28. Hu X, Li Z, Ge Y, Liu S, Shi C (2022) Enhanced π-π stacks of aromatic ring-rich polymer adsorbent for the rapid adsorption of organic dyes. Colloids Surf A 643:128782. https://doi.org/10.1016/j.colsurfa.2022.128782

    Article  CAS  Google Scholar 

  29. Jiang L, Wen Y, Zhu Z, Liu X, Shao WA (2021) Double cross-linked strategy to Construct Graphene Aerogels with highly efficient Methylene Blue Adsorption performance. Chemosphere 265:129169. https://doi.org/10.1016/j.chemosphere.2020.129169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Project under Grant No. (2018YFA0702400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Ma or Alexandre Cameron.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Cameron, A. Dual-responsive polymers synthesized via RAFT polymerization for controlled demulsification and desorption. J Polym Res 30, 278 (2023). https://doi.org/10.1007/s10965-023-03642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03642-5

Keywords

Navigation