Log in

Preparation of high-molecular-weight polylactide by ring-opening polymerization of l-lactide using base/bisurea binary organocatalyst

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Despite the advantages of organocatalysts, the preparation of high-molecular-weight polylactide using organocatalysts remains as a challenge probably due to the transesterification or back-biting side reactions at low catalyst and initiator loadings. In this contribution, a series of organobases and ureas were combined as binary catalysts and screened for the ROP of lactide. The bisurea as the co-catalyst exhibited higher catalytic activity while remaining good controllability over the polymerization compared to the monourea. The controlled ROP of l-lactide was achieved by judiciously chosen of suitable combination of organobase and bisurea. Well-defined polylactides bearing various terminal groups were prepared using different alcohols as initiators. Remarkably, a high-molecular-weight PLA sample with a Mn up to 73.8 kDa was obtained at a low catalyst loading of 0.05 mol% relative to the monomer, which exhibited good mechanical properties that comparable to the commercial PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Supporting Information of this article.

References

  1. Zhang X, Fevre M, Jones GO, Waymouth RM (2018) Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev 118:839–885

    Article  CAS  PubMed  Google Scholar 

  2. Plastics – the Facts (2021) PlasticsEurope: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/. Accessed 18 May 2023

  3. Hong M, Chen EYX (2017) Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem 19:3692–3706

    Article  CAS  Google Scholar 

  4. Fagnani DE, Tami JL, Copley G, Clemons MN, Getzler YDYL, McNeil AJ (2020) 100th Anniversary of Macromolecular Science Viewpoint: Redefining Sustainable Polymers. ACS Macro Lett 10:41–53

    Article  PubMed  Google Scholar 

  5. Worch JC, Dove AP (2020) 100th Anniversary of Macromolecular Science Viewpoint: Toward Catalytic Chemical Recycling of Waste (and Future) Plastics. ACS Macro Lett 9:1494–1506

    Article  CAS  PubMed  Google Scholar 

  6. Haider TP, Völker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew Chem Int Ed 58:50–62

    Article  CAS  Google Scholar 

  7. Tang X, Chen EYX (2019) Toward Infinitely Recyclable Plastics Derived from Renewable Cyclic Esters. Chem 5:284–312

    Article  CAS  Google Scholar 

  8. Haque FM, Ishibashi JSA, Lidston CAL, Shao H, Bates FS, Chang AB, Coates GW, Cramer CJ, Dauenhauer PJ, Dichtel WR, Ellison CJ, Gormong EA, Hamachi LS, Hoye TR, ** M, Kalow JA, Kim HJ, Kumar G, LaSalle CJ, Liffland S, Lipinski BM, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo EA, Reddi Y, Reineke TM, Sheppard DT, Swartz JL, Tolman WB, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer MA (2022) Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chem Rev 122:6322–6373

    Article  CAS  PubMed  Google Scholar 

  9. Anastas PT (2019) Beyond Reductionist Thinking in Chemistry for Sustainability. Trends Chem 1:145–148

    Article  CAS  Google Scholar 

  10. Oh JK (2011) Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter 7:5096–5108

    Article  CAS  Google Scholar 

  11. Huang Y, ** Y, Wang B, Tian H, Weng Y, Men S (2022) Compatibilization and Toughening of Biodegradable Polylactic Acid/Cellulose Acetate Films by Polyamide Amine Dendrimers. J Polym Environ 30:1758–1771

    Article  CAS  Google Scholar 

  12. Huang Y, ** Y, Wang B, Tian H, Weng Y, Sun K, Men S (2022) Preparation and characterization of compatibilized and toughened polylactic acid/cellulose acetate films by long-chain hyperbranched polymers. J Appl Polym Sci 139

    Article  Google Scholar 

  13. Sun J, Huang Y, ** Y, Tian H, Men S (2022) Improvement of mechanical properties and heat distortion temperature of polylactic acid by highly aromatic hyperbranched polyamide. J Appl Polym Sci 139

    Article  CAS  Google Scholar 

  14. Shen Y, Li ZB (2020) Ring-opening Polymerization of Cyclic Esters by Utilizing Organophosphazene Bases toward Biodegradable Polyesters. Acta Polym Sin 51:777–790

    CAS  Google Scholar 

  15. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic Ring-Opening Polymerization. Chem Rev 107:5813–5840

    Article  CAS  PubMed  Google Scholar 

  16. Kiesewetter MK, Shin EJ, Hedrick JL, Waymouth RM (2010) Organocatalysis: Opportunities and Challenges for Polymer Synthesis. Macromolecules 43:2093–2107

    Article  CAS  Google Scholar 

  17. Mezzasalma L, Harrisson S, Saba S, Loyer P, Coulembier O, Taton D (2019) Bulk Organocatalytic Synthetic Access to Statistical Copolyesters from L-Lactide and ε-Caprolactone Using Benzoic Acid. Biomacromolecules 20:1965–1974

    Article  CAS  PubMed  Google Scholar 

  18. Makiguchi K, Yamanaka T, Kakuchi T, Terada M, Satoh T (2014) Binaphthol-derived phosphoric acids as efficient chiral organocatalysts for the enantiomer-selective polymerization of rac-lactide. Chem Commun 50:2883–2885

    Article  CAS  Google Scholar 

  19. Dove AP, Li H, Pratt RC, Lohmeijer BG, Culkin DA, Waymouth RM, Hedrick JL (2006) Stereoselective polymerization of rac- and meso-lactide catalyzed by sterically encumbered N-heterocyclic carbenes. Chem Commun 2881–2883

  20. Li H, Ai B-R, Hong M (2017) Stereoselective ring-opening polymerization of rac-lactide by bulky chiral and achiral N-heterocyclic carbenes. Chin J Polym Sci 36:231–236

    Article  Google Scholar 

  21. Lohmeijer BGG, Pratt RC, Leibfarth F, Logan JW, Long DA, Dove AP, Nederberg F, Choi J, Wade C, Waymouth RM, Hedrick JL (2006) Guanidine and Amidine Organocatalysts for Ring-Opening Polymerization of Cyclic Esters. Macromolecules 39:8574–8583

    Article  CAS  Google Scholar 

  22. Liu SF, Li HK, Zhao N, Li ZB (2018) Stereoselective Ring-Opening Polymerization of rac-Lactide Using Organocatalytic Cyclic Trimeric Phosphazene Base. ACS Macro Lett 7:624–628

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Nederberg F, Messman JM, Pratt RC, Hedrick JL, Wade CG (2007) Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J Am Chem Soc 129:12610–12611

    Article  CAS  PubMed  Google Scholar 

  24. Jiang ZL, Zhao JP, Zhang GZ (2019) Ionic Organocatalyst with a Urea Anion and Tetra-n-butyl Ammonium Cation for Rapid, Selective, and Versatile Ring-Opening Polymerization of Lactide. ACS Macro Lett 8:759–765

    Article  CAS  PubMed  Google Scholar 

  25. Kou XH, Shen Y, Li ZB (2020) Stereoselective Ring-opening Polymerization of rac-Lactide Using Chiral Urea/Strong Organobase Binary Catalyst System. Acta Polym Sin 51:1121–1129

    CAS  Google Scholar 

  26. Lin B, Waymouth RM (2017) Urea Anions: Simple, Fast, and Selective Catalysts for Ring-Opening Polymerizations. J Am Chem Soc 139:1645–1652

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XY, Jones GO, Hedrick JL, Waymouth RM (2016) Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat Chem 8:1047–1053

    Article  CAS  PubMed  Google Scholar 

  28. Lin BH, Waymouth RM (2018) Organic Ring-Opening Polymerization Catalysts: Reactivity Control by Balancing Acidity. Macromolecules 51:2932–2938

    Article  CAS  Google Scholar 

  29. Pothupitiya JU, Dharmaratne NU, Jouaneh TMM, Fastnacht KV, Coderre DN, Kiesewetter MK (2017) H-Bonding Organocatalysts for the Living, Solvent-Free Ring-Opening Polymerization of Lactones: Toward an All-Lactones. All-Conditions Approach Macromolecules 50:8948–8954

    CAS  Google Scholar 

  30. Orhan B, Tschan MJL, Wirotius A-L, Dove AP, Coulembier O, Taton D (2018) Isoselective Ring-Opening Polymerization of rac-Lactide from Chiral Takemoto’s Organocatalysts: Elucidation of Stereocontrol. ACS Macro Lett 7:1413–1419

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez-Sanchez A, Rivilla I, Agirre M, Basterretxea A, Etxeberria A, Veloso A, Sardon H, Mecerreyes D, Cossío FP (2017) Enantioselective Ring-Opening Polymerization of rac-Lactide Dictated by Densely Substituted Amino Acids. J Am Chem Soc 139:4805–4814

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Zhang J, Kou X, Liu S, Li Z (2022) Highly Active Organocatalysts for Stereoselective Ring-Opening Polymerization of Racemic Lactide at Room Temperature. ACS Macro Lett 11:1183–1189

    Article  CAS  PubMed  Google Scholar 

  33. Zaky MS, Wirotius AL, Coulembier O, Guichard G, Taton D (2021) A chiral thiourea and a phosphazene for fast and stereoselective organocatalytic ring-opening-polymerization of racemic lactide. Chem Commun 57:3777–3780

    Article  CAS  Google Scholar 

  34. Zaky MS, Wirotius A-L, Coulembier O, Guichard G, Taton D (2022) Reaching High Stereoselectivity and Activity in Organocatalyzed Ring-Opening Polymerization of Racemic Lactide by the Combined Use of a Chiral (Thio)Urea and a N-Heterocyclic Carbene. ACS Macro Lett 11:1148–1155

    Article  CAS  PubMed  Google Scholar 

  35. Fastnacht KV, Spink SS, Dharmaratne NU, Pothupitiya JU, Datta PP, Kiesewetter ET, Kiesewetter MK (2016) Bis- and Tris-Urea H-Bond Donors for Ring-Opening Polymerization: Unprecedented Activity and Control from an Organocatalyst. ACS Macro Lett 5:982–986

    Article  CAS  PubMed  Google Scholar 

  36. Hewawasam RS, Kalana ULDI, Dharmaratne NU, Wright TJ, Bannin TJ, Kiesewetter ET, Kiesewetter MK (2019) Bisurea and Bisthiourea H-Bonding Organocatalysts for Ring-Opening Polymerization: Cues for the Catalyst Design. Macromolecules 52:9232–9237

    Article  CAS  Google Scholar 

  37. Spink SS, Kazakov OI, Kiesewetter ET, Kiesewetter MK (2015) Rate Accelerated Organocatalytic Ring-Opening Polymerization of L-Lactide via the Application of a Bis(thiourea) H-bond Donating Cocatalyst. Macromolecules 48:6127–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li C, Wang L, Yan Q, Liu F, Shen Y, Li Z (2022) Rapid and Controlled Polymerization of Bio-sourced δ-Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers. Angew Chem Int Ed 61

    CAS  Google Scholar 

  39. Li J, Liu F, Liu Y, Shen Y, Li Z (2022) Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring-Opening Polymerization of Bio-renewable Bifunctional α-Methylene-δ-valerolactone. Angew Chem Int Ed 61

    CAS  Google Scholar 

  40. Coderre DN, Fastnacht KV, Wright TJ, Dharmaratne NU, Kiesewetter MK (2018) H-Bonding Organocatalysts for Ring-Opening Polymerization at Elevated Temperatures. Macromolecules 51:10121–10126

    Article  CAS  Google Scholar 

  41. Pothupitiya JU, Hewawasam RS, Kiesewetter MK (2018) Urea and Thiourea H-Bond Donating Catalysts for Ring-Opening Polymerization: Mechanistic Insights via (Non)linear Free Energy Relationships. Macromolecules 51:3203–3211

    Article  CAS  Google Scholar 

  42. McCutcheon CJ, Zhao B, Ellison CJ, Bates FS (2021) Crazing and Toughness in Diblock Copolymer-Modified Semicrystalline Poly(L-lactide). Macromolecules 54:11154–11169

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors appreciate financial support by National Natural Science Foundation of China (No. 22075160), Taishan Scholar Foundation of Shandong Province (No. tsqn202103078).

Author information

Authors and Affiliations

Authors

Contributions

Wei Zhou: Formal analysis, Investigation, Writing - Original Draft. Chen Xu and Yalei Liu: Validation.Yong Shen: Conceptualization, Methodology, Writing - Review & Editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Yong Shen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1351 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Xu, C., Liu, Y. et al. Preparation of high-molecular-weight polylactide by ring-opening polymerization of l-lactide using base/bisurea binary organocatalyst. J Polym Res 30, 230 (2023). https://doi.org/10.1007/s10965-023-03621-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03621-w

Keywords

Navigation