Log in

Evaluation of deep eutectic solvent as a new monomer for molecularly imprinted polymers for removal of bisphenol A

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Deep eutectic solvent molecularly imprinted polymer (DES-MIP) was synthesized by bulk polymerization via free radical polymerization using bisphenol A (BPA) as a template, DES as a functional monomer, ethylene glycol dimethyl acrylate (EGDMA) as a crosslinker and benzoyl peroxide as initiator. DES functional monomer was prepared by the combination of choline chloride methacrylic acid (ChCl-MAA). The synthesized DES-MIP was then compared with conventional molecularly imprinted polymer (MIP) synthesized using methacrylic acid (MAA) as a functional monomer. The DES-MIP has a higher selectivity for BPA (17.72 mg/g) than competing chemicals, including bisphenol AP (9.78 mg/g), 2-naphthol (8.25), and 4-tertiary butyl-phenol (6.98 mg/g). The optimization parameters include the effects of pH, adsorption kinetics, adsorption isotherm, and thermodynamic studies were investigated. DES-MIP showed the highest binding capacity at pH 7. The kinetic and isotherm studies demonstrated good agreement with a pseudo-second-order kinetic model and Langmuir isotherm models, respectively. The thermodynamic study proved that the adsorption of BPA on DES-MIP was exothermic and spontaneous with ΔH0 (-23.734 × kJ/mol) and ΔG0 (-2.929 kJ/mol). Reusability experiments show that the DES-MIP can be recycled five times without significantly diminishing its adsorption capacity. As a result, it proved that the contribution of DES as a functional monomer alternative in MIP synthesis considerably improved the recognition of BPA adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from authors upon reasonable request.

References

  1. Sikder MT, Rahman MM, Jakariya M, Hosokawa T, Kurasaki M, Saito T (2019) Remediation of water pollution with native cyclodextrins and modified cyclodextrins: A comparative overview and perspectives. Chem Eng J 355:920–941. https://doi.org/10.1016/j.cej.2018.08.218

    Article  CAS  Google Scholar 

  2. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  3. Wu YT et al (2014) Selective and simultaneous determination of trace bisphenol A and tebuconazole in vegetable and juice samples by membrane-based molecularly imprinted solid-phase extraction and HPLC. Food Chem 164:527–535

    Article  CAS  PubMed  Google Scholar 

  4. Almeida S, Raposo A, Almeida-González M, Carrascosa C (2018) Bisphenol A: Food Exposure and Impact on Human Health. Compr Rev Food Sci Food Saf 17(6):1503–1517

    Article  PubMed  Google Scholar 

  5. Reyes-Gallardo EM, Lucena R, Cárdenas S, Valcárcel M (2016) Dispersive micro-solid phase extraction of bisphenol A from milk using magnetic nylon 6 composite and its final determination by HPLC-UV. Microchem J 124:751–756. https://doi.org/10.1016/j.microc.2015.10.025

    Article  CAS  Google Scholar 

  6. Kamel AH, Jiang X, Li P, Liang R (2018) A paper-based potentiometric sensing platform based on molecularly imprinted nanobeads for determination of bisphenol A. Anal Methods 10(31):3890–3895

    Article  CAS  Google Scholar 

  7. Sousa JCG, Barbosa MO, Ribeiro ARL, Ratola N, Pereira MFR, Silva AMT (2020) Distribution of micropollutants in estuarine and sea water along the Portuguese coast. Mar Pollut Bull 154:111120. https://doi.org/10.1016/j.marpolbul.2020.111120

    Article  CAS  PubMed  Google Scholar 

  8. Ćwiek-Ludwicka K (2015) Bisphenol A (BPA) in food contact materials - new scientific opinion from EFSA regarding public health risk. Rocz Panstw Zakl Hig 66(4):299–307

    PubMed  Google Scholar 

  9. Lin Y et al (2008) Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres. Environ Pollut 153(2):483–491. https://doi.org/10.1016/j.envpol.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Fu N et al (2017) Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent. J Chromatogr A 1530:23–34

    Article  CAS  PubMed  Google Scholar 

  11. Yamanaka H, Moriyoshi K, Ohmoto T, Ohe T, Sakai K (2008) Efficient microbial degradation of bisphenol a in the presence of activated carbon. J Biosci Bioeng 105(2):157–160. https://doi.org/10.1263/jbb.105.157

    Article  CAS  PubMed  Google Scholar 

  12. Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N (2016) A short review of techniques for phenol removal from wastewater. Curr Pollut Rep 2(3):157–167. https://doi.org/10.1007/s40726-016-0035-3

    Article  CAS  Google Scholar 

  13. Tursi A, Chatzisymeon E, Chidichimo F, Beneduci A, Chidichimo G (2018) Removal of endocrine disrupting chemicals from water: Adsorption of bisphenol-a by biobased hydrophobic functionalized cellulose. Int J Environ Res Public Health 15(11). https://doi.org/10.3390/ijerph15112419

  14. Kyzas GZ et al (2018) Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chem Eng J 356:91–97. https://doi.org/10.1016/j.cej.2018.09.019

    Article  CAS  Google Scholar 

  15. Ndagijimana P, Liu X, Li Z, Yu G, Wang Y (2019) Optimized synthesis of a core-shell structure activated carbon and its adsorption performance for Bisphenol A. Sci Total Environ 689:457–468. https://doi.org/10.1016/j.scitotenv.2019.06.235

    Article  CAS  PubMed  Google Scholar 

  16. Li G, Dai Y, Wang X, Row KH (2019) Molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with two templates for the simultaneous solid-phase extraction of Fucoidan and Laminarin from Marine Kelp. Anal Lett 52(3):511–525

    Article  CAS  Google Scholar 

  17. Sarafraz-yazdi A, Razavi N (2015) Application of molecularly-imprinted polymers in solid-phase microextraction techniques. Trends Anal Chem 73:81–90

    Article  CAS  Google Scholar 

  18. Oh DK, Yang JC, Hong SW, Park J (2020) Molecular imprinting of polymer films on 2D silica inverse opal via thermal graft copolymerization for bisphenol A detection. Sens Actuators B Chem 323(July):128670. https://doi.org/10.1016/j.snb.2020.128670

    Article  CAS  Google Scholar 

  19. Tiwari MP, Prasad A (2015) Molecularly imprinted polymer based enantioselective sensing devices: A review. Anal Chim Acta 853(1):1–18

    Article  CAS  PubMed  Google Scholar 

  20. Song X, Xu S, Chen L, Wei Y, **ong H (2014) Recent advances in molecularly imprinted polymers in food analysis. J Appl Polym Sci 131(16):1–18

    Article  Google Scholar 

  21. Kweinor Tetteh E, Rathilal S, Amankwa Opoku M, Amoah ID, Chollom MN (2021) Molecular imprinting technology: a new approach for antibacterial materials. In: Ahamed MI, Prasad R (eds) Advanced Antimicrobial Materials and Applications Singapore: Springer Singapore, 2021, pp 393–421

  22. Ardekani R, Borhani S, Rezaei B (2020) Selective molecularly imprinted polymer nanofiber sorbent for the extraction of bisphenol A in a water sample. Polym Int 69(9):780–793

    Article  CAS  Google Scholar 

  23. Tian Y, Wang Y, Wu S, Sun Z, Gong B (2018) Preparation of ampicillin surface molecularly imprinted polymers for its selective recognition of ampicillin in eggs samples. Int J Anal Chem 11

  24. Viveiros R, Rebocho S, Casimiro T (2018) Green strategies for molecularly imprinted polymer development. Polymers (Basel) 10(3)

  25. Yang T et al (2017) Improving whole-cell biocatalysis by addition of deep eutectic solvents and natural deep eutectic solvents. ACS Sustain Chem Eng 5(7):5713–5722

    Article  CAS  Google Scholar 

  26. López-Porfiri P, Brennecke JF, Gonzalez-Miquel M (2016) Excess molar enthalpies of deep eutectic solvents (DESs) composed of quaternary ammonium salts and glycerol or ethylene glycol. J Chem Eng Data 61(12):4245–4251. https://doi.org/10.1021/acs.jced.6b00608

    Article  CAS  Google Scholar 

  27. Fu N et al (2019) A choline chloride-acrylic acid deep eutectic solvent polymer based on Fe 3 O 4 particles and MoS 2 sheets ( poly ( ChCl-AA DES )@ Fe 3 O 4 @ MoS 2) with specific recognition and good antibacterial properties for β-lactoglobulin in milk. Talanta 197(1):567–577

    Article  CAS  PubMed  Google Scholar 

  28. van der Merwe D, Gehring R, Buur JL (2018) Toxicokinetics in Veterinary Toxicology, Third Edit. Elsevier Inc

  29. Abu-Alsoud GF, Hawboldt KA, Bottaro CS (2020) Comparison of four adsorption isotherm models for characterizing molecular recognition of individual phenolic compounds in porous tailor-made molecularly imprinted polymer films. ACS Appl Mater Interfaces 12(10):11998–12009

    Article  CAS  PubMed  Google Scholar 

  30. Mohamed Idris Z, Hameed BH, Ye L, Hajizadeh S, Mattiasson B, Mohd Din AT (2020) Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption. J Environ Chem Eng 8(5)

  31. Balayan S, Chauhan N, Chandra R, Jain U (2022) Electrochemical based c-reactive protein (Crp) sensing through molecularly imprinted polymer (mip) pore structure coupled with bi-metallic tuned screen-printed electrode. Biointerface Res Appl Chem 12(6):7697–7714

    CAS  Google Scholar 

  32. Mohebali A, Abdouss M, Kazemi Y, Daneshnia S (2021) Fabrication and characterization of pH-responsive poly (methacrylic acid)-based molecularly imprinted polymers nanosphere for controlled release of amitriptyline hydrochloride. Polym Adv Technol 32(11):4386–4396

    Article  CAS  Google Scholar 

  33. Ezzati R (2020) Derivation of pseudo-first-order, pseudo-second-order and modified pseudo-first-order rate equations from Langmuir and Freundlich isotherms for adsorption. Chem Eng J 392(September 2019):123705

  34. Ahmed MJ, Dhedan SK (2012) Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib 317:9–14

    Article  CAS  Google Scholar 

  35. Ho YS, McKay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot 76(2):183–191

    Article  CAS  Google Scholar 

  36. Arabi M et al (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33(30):1–33. https://doi.org/10.1002/adma.202100543

    Article  CAS  Google Scholar 

  37. Asman S, Mohamad S, Sarih NM (2016) Study of the morphology and the adsorption behavior of molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization process based on two functionalized β-cyclodextrin as monomers. J Mol Liq 214:59–69

    Article  CAS  Google Scholar 

  38. Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20(2):228–238

    Article  CAS  Google Scholar 

  39. Surikumaran H, Mohamad S, Sarih NM (2014) Molecular imprinted polymer of methacrylic acid functionalised β-Cyclodextrin for selective removal of 2,4-dichlorophenol. Int J Mol Sci 15(4):6111–6136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kavci E (2021) Malachite green adsorption onto modified pine cone: Isotherms, kinetics and thermodynamics mechanism. Chem Eng Commun 208(3):318–327

    Article  CAS  Google Scholar 

  41. Rojas G, Silva J, Flores JA, Rodriguez A, Ly M, Maldonado H (2005) Adsorption of chromium onto cross-linked chitosan. Sep Purif Technol 44(1):31–36

    Article  CAS  Google Scholar 

  42. Ayankojo AG, Reut J, Ciocan V, Öpik A, Syritski V (2019) Talanta Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 120502. https://doi.org/10.1016/j.talanta.2019.120502

  43. Piletsky SA et al (1996) A biomimetic receptor system for sialic acid based on molecular imprinting. Anal Lett 29(2):157–170

    Article  CAS  Google Scholar 

  44. Yuan X, Liu T, Gao L, **ng L, Zhu Y, Li S (2018) A convenient separation method for di(2-ethylhexyl)phthalate by novel superparamagnetic molecularly imprinted polymers. RSC Adv 8(63):36191–36199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Asman S, Mohamad S, Sarih NM (2015) Effects of RAFT agent on the selective approach of molecularly imprinted polymers. Polymers (Basel) 7(3):484–503

    Article  CAS  Google Scholar 

  46. Chen W et al (2021) Magnetic-graphene oxide based molecular imprinted polymers for selective extraction of glycoprotein at physiological pH. Polymer (Guildf) 215(October 2020):123384

  47. Mobasherpour I, Salahi E, Ebrahimi M (2014) Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto multi-walled carbon nanotubes. J Saudi Chem Soc 18(6):792–801

    Article  Google Scholar 

  48. Orimi SMH, Khavarpour M, Kazemi S (2020) Removal of bisphenol a from water solution using molecularly imprinted nanopolymers: Isotherm and kinetic studies. J Water Environ Nanotechnol 5(1):56–67

    CAS  Google Scholar 

  49. Pazhoor MT, Gautam PK, Samanta S, Suman, Bangotra P, Banerjee S (2021) Performance assessment of Zn–Sn bimetal oxides for the removal of inorganic arsenic in groundwater. Groundw Sustain Dev 14(April):100600

    Article  Google Scholar 

  50. Tomé LIN, Baião V, da Silva W, Brett CMA (2018) Deep eutectic solvents for the production and application of new materials. Appl Mater Today 10:30–50

    Article  Google Scholar 

  51. Acosta R et al (2018) Adsorption of Bisphenol A on KOH-activated tyre pyrolysis char. J Environ Chem Eng 6(1):823–833

    Article  CAS  Google Scholar 

  52. Özcan A, Öncü EM, Özcan AS (2006) Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. Colloids Surf A Physicochem Eng Asp 277(1–3):90–97

    Article  Google Scholar 

  53. Xu K, Wang Y, Wei X, Chen J, Xu P, Zhou Y (2018) Preparation of magnetic molecularly imprinted polymers based on a deep eutectic solvent as the functional monomer for specific recognition of lysozyme. Microchim Acta 185(2)

Download references

Acknowledgements

The research was supported by the Ministry of Higher Education (MOHE) through Fundamental Research Grant Scheme for Research Acculturation of Early Career Research (FRGS-Racer) RACER/1/2019/STG01/UTHM//2 and assistance support from Universiti Tun Hussein Onn Malaysia (UTHM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Syed Asim Hussain Shah or Saliza Asman.

Ethics declarations

Conflict of interest

All authors have no conflict of interest including any financial, personal, or other relationships with other people or organizations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.A.H., Asman, S. Evaluation of deep eutectic solvent as a new monomer for molecularly imprinted polymers for removal of bisphenol A. J Polym Res 30, 205 (2023). https://doi.org/10.1007/s10965-023-03581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03581-1

Keywords

Navigation