Log in

Synthesis of near-infrared absorbing conjugated copolymers with perfluorocarbon side chains to improve singlet oxygen generation efficiency

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) has shown promising development due to its low toxicity, high selectivity and low side effects. However, the effectiveness of PDT is dependent on the concentration of oxygen and tumor cells have a hypoxia microenvironment that reduces the therapeutic effect of PDT. Therefore, near-infrared absorbing conjugated copolymers with perfluorocarbon side chains, 2,5-bis(2- octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione-co-2,5-thiophene-co-9,9-bis(N-methylperfluorohexylsulfonamidoethyl propionate)- fluorene copolymers, with the ability to generate singlet oxygen under hypoxia conditions were designed and synthesized. The structures of the copolymers were characterized by Fourier transform infrared spectrometer (FTIR) and proton nuclear magnetic resonance spectrum (1HNMR). The singlet oxygen generation ability of the copolymers and corresponding nanoparticles under organic solvents and aqueous conditions was investigated. The results show that the absorption wavelengths of the fluorine-containing conjugated copolymers are greater than 650 nm and they show strong absorption in near-infrared region. The perfluorocarbon (PFC) side chain endows the copolymers with high singlet oxygen generation capability. As the content of fluorine-containing structural units increases, the generation capability of singlet oxygen increases. When the proportion of fluorine-containing structural units is 35%mol (P3-F35%), the copolymer has the singlet oxygen quantum yield of 36.29%. And the singlet oxygen generation capability of the fluorine-containing copolymers is significantly enhanced even under hypoxia conditions. The nanoparticle of fluorine-containing conjugated polymer shows good singlet oxygen generation ability in aqueous suspension. The results of this study indicate that introducing fluorine-containing structure unit into near-infrared absorbing conjugated copolymers is an effective way to enhance the singlet oxygen generation capability of copolymers, which may have broad application prospects in the field of photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data is available upon requirement.

References

  1. Nekhlyudov L, Campbell GB, Schmitz KH, Brooks GA, Kumar AJ, Ganz PA, Von Ah D (2022) Cancer 128:222–229. https://doi.org/10.1002/cncr.33913

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2020) CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  3. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K (2013) Chem Soc Rev 42:77–88. https://doi.org/10.1039/c2cs35216h

    Article  CAS  PubMed  Google Scholar 

  4. Niculescu A-G, Grumezescu AM (2021) Appl Sci 11. https://doi.org/10.3390/app11083626

  5. Hou YJ, Yang XX, Liu RQ, Zhao D, Guo CX, Zhu AC, Wen MN, Liu Z, Qu GF, Meng HX (2020) Int J Nanomedicine 15:6827–6838. https://doi.org/10.2147/IJN.S269321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) CA Cancer J Clin 61:250–281. https://doi.org/10.3322/caac.20114

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fan W, Huang P, Chen X (2016) Chem Soc Rev 45:6488–6519. https://doi.org/10.1039/c6cs00616g

    Article  CAS  PubMed  Google Scholar 

  8. Escudero A, Carrillo-Carrión C, Castillejos MC, Romero-Ben E, Rosales-Barrios C, Khiar N (2021) Mater Chem Front 5:3788–3812. https://doi.org/10.1039/d0qm00922a

    Article  CAS  Google Scholar 

  9. Huang L, Zhao S, Wu J, Yu L, Singh N, Yang K, Lan M, Wang P, Kim JS (2021) Coord Chem Rev 438. https://doi.org/10.1016/j.ccr.2021.213888

  10. Huang B, Chen S, Pei W, Xu Y, Jiang Z, Niu C, Wang L (2020) Front Chem 8:358. https://doi.org/10.3389/fchem.2020.00358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roy S, Kumaravel S, Sharma A, Duran CL, Bayless KJ, Chakraborty S (2020) Exp Biol Med (Maywood) 245:1073–1086. https://doi.org/10.1177/1535370220934038

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Kwon N, Guo T, Liu Z, Yoon J (2018) Angew Chem Int Ed Engl 57:11522–11531. https://doi.org/10.1002/anie.201805138

    Article  CAS  PubMed  Google Scholar 

  13. Zou J, Zhu J, Yang Z, Li L, Fan W, He L, Tang W, Deng L, Mu J, Ma Y, Cheng Y, Huang W, Dong X, Chen X (2020) Angew Chem Int Ed Engl 59:8833–8838. https://doi.org/10.1002/anie.201914384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kv R, Liu TI, Lu IL, Liu CC, Chen HH, Lu TY, Chiang WH, Chiu HC (2020) J Control Release 328:87–99. https://doi.org/10.1016/j.jconrel.2020.08.038

    Article  CAS  PubMed  Google Scholar 

  15. Guo X, Qu J, Zhu C, Li W, Luo L, Yang J, Yin X, Li Q, Du Y, Chen D, Qiu Y, Lou Y, You J (2018) Drug Deliv 25:585–599. https://doi.org/10.1080/10717544.2018.1435751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee J, Oh ET, Yoon H, Kim CW, Han Y, Song J, Jang H, Park HJ, Kim C (2017) Nanoscale 9:6901–6909. https://doi.org/10.1039/c7nr00808b

    Article  CAS  PubMed  Google Scholar 

  17. Jiang X, Wang C, Fitch S, Yang F (2018) Theranostics 8:1350–1360. https://doi.org/10.7150/thno.22736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song G, Chen Y, Liang C, Yi X, Liu J, Sun X, Shen S, Yang K, Liu Z (2016) Adv Mater 28:7143–7148. https://doi.org/10.1002/adma.201602111

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Sun P, Zhao L, Yan X, Ng DKP, Lo PC (2020) Angew Chem Int Ed Engl 59:23228–23238. https://doi.org/10.1002/anie.202010005

    Article  CAS  PubMed  Google Scholar 

  20. Li SY, Cheng H, **e BR, Qiu WX, Zeng JY, Li CX, Wan SS, Zhang L, Liu WL, Zhang XZ (2017) ACS Nano 11:7006–7018. https://doi.org/10.1021/acsnano.7b02533

    Article  CAS  PubMed  Google Scholar 

  21. Miller MA, Sletten EM (2020) ChemBioChem 21:3451–3462. https://doi.org/10.1002/cbic.202000297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Day RA, Sletten EM (2021) Curr Opin Colloid Interface Sci 54. https://doi.org/10.1016/j.cocis.2021.101454

  23. Day RA, Estabrook DA, Logan JK, Sletten EM (2017) Chem Commun (Camb) 53:13043–13046. https://doi.org/10.1039/c7cc07038a

    Article  CAS  PubMed  Google Scholar 

  24. Zhou Z, Zhang B, Wang H, Yuan A, Hu Y, Wu J (2018) Theranostics 8:4898–4911. https://doi.org/10.7150/thno.27598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng Y, Cheng H, Jiang C, Qiu X, Wang K, Huan W, Yuan A, Wu J, Hu Y (2015) Nat Commun 6:8785. https://doi.org/10.1038/ncomms9785

    Article  CAS  PubMed  Google Scholar 

  26. Hu H, Yan X, Wang H, Tanaka J, Wang M, You W, Li Z (2019) J Mater Chem B 7:1116–1123. https://doi.org/10.1039/c8tb01844h

    Article  CAS  PubMed  Google Scholar 

  27. Shao P, Zhang S, Hu S, Han L, Jia N, Bai M (2017) RSC Adv 7:50555–50561. https://doi.org/10.1039/C7RA06348B

    Article  CAS  PubMed  Google Scholar 

  28. Cui D, **e C, Li J, Lyu Y, Pu K (2018) Adv Healthc Mater 7:e1800329. https://doi.org/10.1002/adhm.201800329

    Article  CAS  PubMed  Google Scholar 

  29. Gao S, Yu S, Zhang Y, Wu A, Zhang S, Wei G, Wang H, **ao Z, Lu W (2021) Adv Funct Mater 31. https://doi.org/10.1002/adfm.202008356

  30. Wu W, Mao D, Hu F, Xu S, Chen C, Zhang CJ, Cheng X, Yuan Y, Ding D, Kong D, Liu B (2017) Adv Mater 29. https://doi.org/10.1002/adma.201700548

  31. Fu Ph, Li J, Wang Cy, Ren Q (2021) J Appl Polym Sci 138. https://doi.org/10.1002/app.50434

  32. Zhang G, Ma S, Wang W, Zhao Y, Ruan J, Tang L, Lu H, Qiu L, Ding Y (2019) Front Chem 7:359. https://doi.org/10.3389/fchem.2019.00359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang X, Chen M, Bhattarai P, Hameed S, Dai Z (2020) ACS Nano 14:13569–13583. https://doi.org/10.1021/acsnano.0c05617

    Article  CAS  PubMed  Google Scholar 

  34. Senkuytu E, Ecik ET (2017) Spectrochim Acta A Mol Biomol Spectrosc 182:26–31. https://doi.org/10.1016/j.saa.2017.03.065

    Article  CAS  PubMed  Google Scholar 

  35. Ruan Z, Miao W, Yuan P, Le L, Jiao L, Hao E, Yan L (2018) Bioconjug Chem 29:3441–3451. https://doi.org/10.1021/acs.bioconjchem.8b00576

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Xue Y, Tian J, Liu Z, Zhuang A, Gu P, Zhou H, Zhang W, Fan X (2020) Carbohydr Polym 237:116119. https://doi.org/10.1016/j.carbpol.2020.116119

    Article  CAS  PubMed  Google Scholar 

  37. Moon Y, Shim MK, Choi J, Yang S, Kim J, Yun WS, Cho H, Park JY, Kim Y, Seong JK, Kim K (2022) Theranostics 12:1999–2014. https://doi.org/10.7150/thno.69119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang T, Liu L, Deng Y, Guo Z, Zhang G, Ge Z, Ke H, Chen H (2017) Adv Mater 29. https://doi.org/10.1002/adma.201700487

Download references

Funding

No funding supports this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Ethics declarations

Ethical approval

This work complies with ethical standard.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, J., Wang, C. et al. Synthesis of near-infrared absorbing conjugated copolymers with perfluorocarbon side chains to improve singlet oxygen generation efficiency. J Polym Res 30, 173 (2023). https://doi.org/10.1007/s10965-023-03546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03546-4

Keywords

Navigation