Log in

Theoretical design, synthesis, characterization and solvatochromic studies and non-linear optical properties of poly[( 2,3,5,6- tetrafluorophenyl)-2,3-dihydrothieno[3,4-b][1,4]dioxine)] copolymer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A donor–acceptor type π-conjugated conducting, poly[( 2,3,5,6- tetrafluorophenyl)-2,3-dihydro-thieno[3,4-b][1,4]dioxine)], P(EDOT-4FPH) was designed and synthesized by direct arylation polymerization method. Computational calculations for the monomers, oligomers, and copolymer were performed using Gaussian 09 with two hybrid functional, B3LYP and HSE06 using (6-31G (d,p)) basis set. Theoretical band gap obtained from HSE06 (6-31G/d,p) basis set was 2.94 eV. The polymer was characterized by FTIR, 1H NMR, EDX, and TGA. The Electrochemical band gap was determined by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV). The values were 1.81 eV,1.71 eV and 1.64 eV. Optical band gap was observed to be 2.05 eV. Photophysical studies were performed and the copolymer exhibited lifetime decay of 0.55 ns and quantum yield of 0.37 in chloroform solution. It showed positive solvatochromism with a large Stoke’s shift from 2310 cm−1 to 4152 cm−1 in solutions of varying polarity. Third-order non-linear optical properties of the copolymer P(EDOT-4FPH) were observed using the open-aperture Z-scan technique at 532 nm in DMSO solvent. OA Z-scan trace and optical limiting effect of the copolymer were studied at different laser intensities. At 10 µJ, the lowest optical threshold of 0.005 GW/cm2 was found with reverse saturable non-linear absorption and non-linear absorption coefficient of 3.63 × 10–9 m/W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data analyzed in this study are included in this article. If more information is needed, it can be available on request from the corresponding author.

References

  1. Li L, Yu Y, Yu J (2021) Semiconductor solar photocatalysts, organic semiconductor photocatalysts, Wiley 325–364

  2. Hopkins J, Fidanovski K, Lauto A, Mawad D (2019) All-organic semiconductors for electrochemical biosensors: an overview of recent progress in material design. Front Bioeng Biotechnol 7:237–245

    Article  Google Scholar 

  3. Lete C, Lupu S, Lakard B, Hihn JY, Campo FJ (2015) Multi-analyte determination of dopamine and catechol at single-walled carbon nanotubes – Conducting polymer – Tyrosinase based electrochemical biosensors. J Electroanal Chem 744:53–61

    Article  CAS  Google Scholar 

  4. Zhang H, Ming S, Liang Y, Feng L, Xu T (2020) A multi-color electrochromic material based on organic polymer. Int J Electrochem Sci 15:1044–1057

    Article  Google Scholar 

  5. Zhang L, Jamal R, Zhao Q, Zhang Y, Wang M, Abdiryim T (2015) Polym Compos 37:2884–2896

    Article  Google Scholar 

  6. Nelson J (2011) Polymer: fullerene bulk heterojunction solar cells. Mater Today 14:1369–7021

    Article  Google Scholar 

  7. Nattestad A, Perera I, Spiccia L (2016) Developments and prospects for photocathodic and tandem dye-sensitized solar cells. J Photochem Photobiol C 28:44–71

    Article  CAS  Google Scholar 

  8. Roncali J (2007) Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol Rapid Commun 28:1761–1775

    Article  CAS  Google Scholar 

  9. Schipper DJ, Fagnou K (2011) Direct arylation as a synthetic tool for the synthesis of thiophene-based organic electronic materials. Chem Mater 23:1594–1600

    Article  CAS  Google Scholar 

  10. Nohara Y, Kuwabara J, Yasuda T, Han L, Kanbara T (2014) Two-step direct arylation for synthesis of naphthalenediimide-based conjugated polymer. J Polym Sci A Polym Chem 52:1401–1407

    Article  CAS  Google Scholar 

  11. Poduval MK, Burrezo PM, Casado J, López Navarrete JT, Ortiz RP, Kim T-H (2013) Novel thiophene-phenylene-thiophene fused bislactam-based donor–acceptor type conjugate polymers: synthesis by direct arylation and properties. Macromolecules 46:9220–9230

    Article  CAS  Google Scholar 

  12. Okutan M, Yerli Y, San SE, Yılmaz F, Gunaydın O, Durak M (2007) Dielectric properties of thiophene based conducting polymers. Synth Met 157:368–373

    Article  CAS  Google Scholar 

  13. Park JH, Jung EH, Jung JW, Jo WH (2013) A fluorinated phenylene unit as a building block for high performance n-type semiconducting polymer. Adv Mater 25:2583–2588

    Article  CAS  Google Scholar 

  14. Araujo MHD, Matencio T, Donnici CL, Calado HDR (2020) Electrical and spectroelectrochemical investigation of thiophene-based donor-acceptor copolymers with 3,4-ethylenedioxythiophene. Polimeros 30:1–10

    Article  Google Scholar 

  15. Fiket L, Cevi MB, Brk L, Zagar P, Horvat A, Katan Z (2022) Intrinsically stretchable poly(3,4-ethylenedioxythiophene) conducting polymer film for flexible electronics. Polymers 14:2340–2356

    Article  CAS  Google Scholar 

  16. Yang Y, Deng H, Fu Q (2020) Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater Chem Front 4:3130–3152

    Article  CAS  Google Scholar 

  17. Nitti A, Debattista F, Abbondanza L, Bianchi G, Po R, Pasini D (2017) Donor-acceptor conjugated copolymers incorporating tetrafluorobenzene as the π-electron deficient unit. J Polym Sci A Polym Chem 55:1601–1610

    Article  CAS  Google Scholar 

  18. Broll S, Nübling F, Luzio A, Lentzas D, Komber H, Caironi M, Sommer M (2015) Defect-analysis of high electron mobility diketopyrrolopyrrole copolymers made by direct arylation polycondensation. Macromolecules 48:7481–7488

    Article  CAS  Google Scholar 

  19. Wong S, Ma H, Jen AK-Y, Barto R, Frank CW (2003) Highly fluorinated trifluorovinyl aryl ether monomers and perfluorocyclobutane aromatic ether polymers for optical waveguide applications. Macromolecules 36:8001–8007

    Article  CAS  Google Scholar 

  20. Pagliaro M, Ciriminna R (2005) New fluorinated functional materials. J Mater Chem 15:4981–4991

    Article  CAS  Google Scholar 

  21. Yamazaki K, Kuwabara J, Kanbara T (2013) Synthesis of π-conjugated polymer consisting of pyrrole and fluorene units by ru-catalyzed site-selective direct arylation polycondensation. Macromol Rapid Commun 34:69–73

    Article  CAS  Google Scholar 

  22. Kuwabara J, Yasuda T, Choi SJ, Lu W, Yamazaki K, Kagaya S, Han L, Kanbara T (2014) Direct arylation polycondensation for synthesis of optoelectronic materials. Polym J 24:3226–3233

    CAS  Google Scholar 

  23. Rudenko AE, Thompson BC (2015) Optimization of direct arylation polymerization through the identification and control of defects in polymer structure. J Polym Sci A Polym Chem 53:135–147

    Article  CAS  Google Scholar 

  24. Kowalski S, Allarda S, Zilberberg K, Riedl T, Scherf U (2013) Direct arylation as simplified alternative for the synthesis of conjugated (co) polymers. Prog Polym Sci 38:1805–1814

    Article  CAS  Google Scholar 

  25. Crouch DJ, Skabara PJ, Heeney M, McCulloch I, Colesc SJ, Hursthousec MB (2005) Hexyl-substituted oligothiophenes with a central tetrafluorophenylene unit: crystal engineering of planar structures for p-type organic semiconductors. Chem Comm 11:1465–1467

    Article  Google Scholar 

  26. Wang Z, Li K, Zhao D, Lan J, You J (2011) Palladium-catalyzed oxidative CH/CH cross-coupling of indoles and pyrroles with heteroarenes. J Am Chem Soc 50:5365–5369

    CAS  Google Scholar 

  27. Pillai JJ (2019) Development of donor-acceptor low band gap polymers for photoconducting and non-linear optical applications: theoretical design and synthesis. Ph.D Thesis, Cochin Univ Sci Technol

  28. Narayanan S, Raghunathan SP, Poulose AC, Mathew S, Sreekumar K, Kartha CS, Joseph R (2015) Third-order nonlinear optical properties of 3,4- ethylenedioxythiophene copolymers with chalcogenadiazole acceptors. New J Chem 39:2795–2806

    Article  CAS  Google Scholar 

  29. Narayanan S, Raghunathan SP, Mathew S, Kumar MVM, Abbas A, Sreekumar K, Kartha CS, Joseph R (2015) Synthesis and third-order nonlinear optical properties of low band gap 3,4-ethylenedioxythiophene-quinoxaline copolymers. Eur Polym J 64:157–169

    Article  CAS  Google Scholar 

  30. Kempe F, Riehle F, Komber H, Matsidik R, Walter M, Sommer M (2020) Semifluorinated, kinked polyarylenes via direct arylation polycondensation. Polym Chem 11:6928–6934

    Article  CAS  Google Scholar 

  31. Baby AM, Theresa LV, Sreekumar K (2022) Theoretical design, synthesis and third-order non-linear optical properties of thiophene and tetrafluorobenzene based low band gap conducting polymers. J Mol Struct 1265:133301–133319

    Article  CAS  Google Scholar 

  32. Cui X, **o C, Jiang W, Wang Z (2019) Alternating tetrafluorobenzene and thiophene units by direct arylation for organic electronics. Chem Asian J 14:1443–1447

    Article  CAS  Google Scholar 

  33. Kharandiuk T, Hussien EJ, Cameron J, Petrina R, Findlay NJ, Naumov R, Klooster WT, Coles SJ, Ai Q, Goodlett S, Risko C, Skabara PJ (2019) Noncovalent close contacts in fluorinated thiophene−phenylene− thiophene conjugated units: understanding the nature and dominance of O···H versus S···F and O···F interactions with respect to the control of polymer conformation. Chem Mater 31:7070–7079

    Article  CAS  Google Scholar 

  34. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  35. Xu X, William A (2004) Goddard, the X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci 101:2673–2677

    Article  CAS  Google Scholar 

  36. Burke K, Perdew JP, Wang Y, Dobson JF, Vignale G, Das MP (1998) Electronic density functional theory: recent progress and new directions, plenum press

  37. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Int J Quantum Chem 47:101–101

    Google Scholar 

  38. Kornobis K, Kumar N, Lodowski P, Jaworska M, Piecuch P, Lutz JJ, Wong BM, Kozlowski PM (2013) Electronic structure of the S1 state in methylcobalamin: insight from CASSCF/MC-XQDPT2, EOM-CCSD, and TD-DFT calculations. J Comput Chem 113:479–488

    Google Scholar 

  39. Kumar N, Alfonso-Prieto M, Rovira C, Lodowski P, Jaworska M, Kozlowski PM (2011) Role of the axial base in the modulation of the Cob (I) alamin electronic properties: insight from QM/MM, DFT, and CASSCF calculation. J Chem Theory Comput 7:1541–1551

    Article  CAS  Google Scholar 

  40. Bryan MW, Manuel P, Fabio DS (2009) Optical and magnetic properties of boron fullerenes. Phys Chem Chem Phys 11:4523–4527

    Article  Google Scholar 

  41. Kim K, Jordan KD (1994) Comparison of density functional and MP2 calculations on the water monomer and dimer. J Phys Chem 98:10089–10094

    Article  CAS  Google Scholar 

  42. Vosko SH, Wilk L, Nusair M (1980) Structural and electronic properties of Bixo3 (X= Mn, Fe, Cr). J Phys 58:1200–1211

    CAS  Google Scholar 

  43. Devlin FJ, Finley JW, Stephens PJ, Frisch MJ (1995) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, a comparison of local, nonlocal, and hybrid density functionals. J Phys Chem 95:16883–16902

    Article  Google Scholar 

  44. Dobson JF, Vignale G, Das MP (2013) Electronic density functional theory: recent progress and new directions. Springer Science & Business Media 147–149

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov A, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AJ, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT. Gaussian 09, Revision B02

  46. Marom N, Tkatchenko A, Rossi M, Gobre VV, Hod O, Scheffler M (2011) Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals. J Chem Theory Comput 7:3944–3951

    Article  CAS  Google Scholar 

  47. Donat-Bouillud A, Levesque I, Tao Y, D’Iorio M, Beaupré S, Blondin P, Ranger M, Bouchard J, Leclerc M (2000) Light-emitting diodes from fluorene-based-conjugated polymers. Chem Mater 12:1931–1936

    Article  CAS  Google Scholar 

  48. Liégault B, Lapointe D, Caron L, Vlassova A, Fagnou K (2009) Establishment of broadly applicable reaction conditions for the palladium-catalyzed direct arylation of heteroatom-containing aromatic compounds. J Org Chem 74:1826–1834

    Article  Google Scholar 

  49. Leclerc M, Brassard S, Beaupré S (2020) Direct (hetero) arylation polymerization: towards defect-free conjugated polymers. Polym J 52:13–20

    Article  CAS  Google Scholar 

  50. Gobalasingham NS, Thompson BC (2018) Direct arylation polymerization: a guide to optimal conditions for effective conjugated polymers. Prog Polym Sci 83:135–201

    Article  CAS  Google Scholar 

  51. Hayashi S, Yamamoto S, Koizumi T (2018) Study on direct arylation of bithiophene with dibromoxanthene: detection of polymer, oligomeric and cyclic byproducts and easy separation of the polymer. Mater Today Commun 17:259–265

    Article  CAS  Google Scholar 

  52. Huang J, Lin Z, Feng W, Wang W (2019) Synthesis of bithiophene-based D-A1-D-A2 terpolymers with different a2 moieties for polymer solar cells via direct arylation. Polymers 11:55–66

    Article  Google Scholar 

  53. Narayanan S (2015) Design and synthesis of donor-acceptor low band gap copolymers for photoconducting and non-linear optical applications: theoretical design and synthesis. Ph.D Thesis, Cochin Univ Sci Technol

  54. Bredas JL, Silbey R, Boudreux DX, Chance RR (1983) Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J Am Chem Soc 105:6555–6559

    Article  CAS  Google Scholar 

  55. Puschning P, Ambrosch-Draxl C, Heimel G, Zojer E, Resel R, Leising G, Kriechbaum M, Graupner W (2001) Pressure studies on the intermolecular interactions in biphenyl. Synth Met 116:327–331

    Article  Google Scholar 

  56. Eaton VJ, Steele DJ (1973) Dihedral angle of biphenyl in solution and the molecular force field. J Chem Soc Faraday Trans 69:1601–1608

    Article  CAS  Google Scholar 

  57. Kiebooms R, Aleshin A, Hutchison K, Wudl F, Heeger A (1999) Doped poly(3,4-ethylenedioxythiophene) films: thermal, electromagnetical and morphological analysis. Synth Met 101:436–437

    Article  CAS  Google Scholar 

  58. Kumar M (2012) Design and synthesis of conjugated polymers for photovoltaic and chemosensor applications. Ph.D Thesis, Cochin Univ Sci Technol

  59. Bindhu CV, Harilal SS, Varier GK, Issac RC, Nampoori VPN, Vallabhan CPG (1996) Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique. J Phys D Appl Phys 29:1074–1079

    Article  CAS  Google Scholar 

  60. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, Edition 2nd. Kluwer, Academic/Plenum Publishers

    Book  Google Scholar 

  61. Jameson DM, Croney JC, Moens P (2003) Basic concepts in fluorescence, fluorescence: practical aspects and some anecdotes. Methods Enzymol 360:1–43

    Article  CAS  Google Scholar 

  62. Dhami S, de Mello AJ, Rumbles G, Bishop SM, Phillips D, Beeby A (1995) Phthalocyanine fluorescence at high concentration: dimers or reabsorption effect? Photochem Photobiol 61:341–346

    Article  CAS  Google Scholar 

  63. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst 108:1067–1071

    Article  CAS  Google Scholar 

  64. Narayanan S, Abbas A, Anjali CP, Xavier S, Sudha Kartha C, Devaky KS, Sreekumar K, Joseph R (2018) Low band gap donor-acceptor phenothiazine copolymer with triazine segment: design, synthesis and application for optical limiting devices. J Lumin 198:449–456

    Article  CAS  Google Scholar 

  65. Suhling K, French PMW, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobio Sci 4:13–22

    Article  CAS  Google Scholar 

  66. Millar DP (1996) Time-resolved fluorescence spectroscopy. Curr Opin Struct Biol 6:637–642

    Article  CAS  Google Scholar 

  67. Magde D, Rojas GE, Seybold P (1999) Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem Photobiol 70:737–744

    Article  CAS  Google Scholar 

  68. Siddlingeshwar SB, Thomas A, Kirilova EM, Divakar DD, Alkheraif AA (2019) Experimental and theoretical insights on the effect of solvent polarity on the photophysical properties of a benzanthrone dye. Spectrochim Acta A Mol Biomol Spectrosc 218:221–228

    Article  Google Scholar 

  69. Reichardt C (2007) Solvents and solvent effects: an introduction. Org Process Res Dev 11:105–113

    Article  CAS  Google Scholar 

  70. Čunderlı́ková B, Šikurová L (2001) Solvent effects on photophysical properties of merocyanine 540 B. Chem Phy 263:415–422

    Article  Google Scholar 

  71. Xavier S, Narayanan S, Anjali CP, Sreekumar K (2019) Theoretical design, synthesis and studies on the solvatochromic behaviour of low band gap phenylenevinylene based copolymers. Eur Polym J 113:365–376

    Article  CAS  Google Scholar 

  72. Banerji N, Gagnon E, Morgantini P, Valouch S, Mohebbi AL, Seo JH, Lecrec M, Heeger AJ (2012) Breaking down the problem: optical transitions, electronic structure and photoconductivity in conjugated polymer PCDTBT and in its separate building blocks. J Phys Chem 116:11456–11469

    CAS  Google Scholar 

  73. Van Stryland EW, Sheik-Bahae M, Said AA, Hagan DJ (1993) Characterization of nonlinear optical absorption and refraction. Prog Cryst Growth Charact Mater 27:279–311

    Article  Google Scholar 

  74. He GS, Xu GC, Prasad PN, Reinhardt BA, Bhatt JC, Dillard AG (1995) Nonlinear multiphoton processes in organic and polymeric materials. Opt Lett 20:435–437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from UGC, New Delhi, India, in the form of a Senior Research Fellowship to Anju Maria Baby, Mr. Mohammed Sadik N. K., Research Scholar, Applied Chemistry, and CUSAT for DFT analysis, Mr. Anugop B., Research Scholar, Department of Photonics, CUSAT for NLO measurements. Mr. Mahendra K. Mohan, Institute for Stem Cell Science and Regenerative Medicine for 1H NMR analysis. The authors are thankful to STIC, CUSAT for various analysis and SERB India grant numbers EMR/2016/003614 and EEQ/2018/000468 for the financial assistance

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnapillai Sreekumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 277 KB)

Supplementary file2 (DOCX 514 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baby, A.M., Balachandran, A., Kailasnath, M. et al. Theoretical design, synthesis, characterization and solvatochromic studies and non-linear optical properties of poly[( 2,3,5,6- tetrafluorophenyl)-2,3-dihydrothieno[3,4-b][1,4]dioxine)] copolymer. J Polym Res 29, 507 (2022). https://doi.org/10.1007/s10965-022-03347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03347-1

Keywords

Navigation