Log in

Polyvinyl alcohol-phytic acid polymer films as promising gas/vapor sorption materials

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, we present the studies on gas/vapor sorption properties of polyvinyl alcohol/phytic acid (PVA/PA) composite polymeric films. To understand the gas sorption properties, we have performed the Brunauer − Emmet − Teller (BET) analysis of various PVA/PA polymeric films with varying weight percentages of PVA and PA. The films were mesoporous, while their specific surface area and average pore size were increasing with the gradual increase in PA compared to that of pure PVA. Observation in field emission—scanning electron microscope (FESEM) showed layered and porous morphologies of the PVA/PA polymer films, and hence they could trap gas molecules, aiding in efficient gas sorption. The tensile strength of the polymeric films decreased with the increase in quantity of PA, while the elongation at break increased with the increase in quantity PA content. Besides, vapor sorption studies provided evidence that the PVA/PA polymer films absorb water–vapor. The study showed a general trend of increasing vapor sorption with the increase in weight percent of PA. In particular, 2:3 PVA/PA polymer film showed the highest vapor sorption of 0.15 g moisture content per gram of the sample. Overall, our study reveals the potential use of PVA/PA composite polymeric films as gas/vapor sorption materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1:
Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8

Similar content being viewed by others

References

  1. Nollet JA (1995) Investigations on the causes for the ebullition of liquids. J Membr Sci 100:1

    Article  CAS  Google Scholar 

  2. Abedini R, Nezhadmoghadam A (2010) Application of membrane in gas separation processes: its suitability and mechanisms. Pet Coal 52(2):69–80

    CAS  Google Scholar 

  3. Robeson LM (1999) Polymer membranes for gas separation. Curr Opin Solid State Mater Sci 4:549–552

    Article  CAS  Google Scholar 

  4. Wang F, Zhu Y, Xu H, Wang A (2019) Preparation of Carboxymethyl Cellulose-Based Macroporous Adsorbent by Eco-Friendly Pickering-MIPEs Template for Fast Removal of Pb2+and Cd2+. Front Chem 7:603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Samotus B, Schwimmer S (1962) Phytic Acid as a Phosphorus Reservoir in the Develo** Potato Tuber. Nature 194:578–579

    Article  CAS  Google Scholar 

  6. Hatch AJ, York JD (2010) SnapShot: inositol phosphates. Cell 143:1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BC, Shi Y, Cui Y (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci USA 109:9287–9292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang G, Qiao J, Hong F (2012) Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC. Int J Hydrogen Energy 37:9182–9192

    Article  CAS  Google Scholar 

  9. Xu AW, Yu Q, Dong WF, Antonietti M, Cölfen H (2005) Stable amorphous CaCO3 microparticles with hollow spherical superstructures stabilized by phytic acid. Adv Mater 17:2217–2221

    Article  CAS  Google Scholar 

  10. Zhang G, Wang G, Liu Y, Liu H, Qu J, Li J (2016) Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting. J Am Chem Soc 138:14686–14693

    Article  CAS  PubMed  Google Scholar 

  11. Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:2941

    Article  CAS  Google Scholar 

  12. Zhou Y, Ding C, Qian X, An X (2015) Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or codopant. Carbohyd Polym 115:670–676

    Article  CAS  Google Scholar 

  13. Gao X, Lu K, Xu L, Xu H, Lu H, Gao F, Hou S, Ma H (2016) Excellent anti-corrosive pretreatment layer on iron substrate based on three-dimensional porous phytic acid/silane hybrid. Nanoscale 8:1555–1564

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Li Y, Song Y, Niu S, Li N (2017) Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity. Ultrason Sonochem 39:853–862

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943

    Article  PubMed  CAS  Google Scholar 

  16. DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326

    Article  CAS  PubMed  Google Scholar 

  17. Yu H, Chong ZZ, Tor SB, Liu E, Loh NH (2015) Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating. RSC Adv 16:8377–8388

    Article  CAS  Google Scholar 

  18. Li FY, **a HS (2017) Dopamine-functionalized poly(vinyl alcohol) elastomer with melt processability and self-healing properties. J Appl Polym Sci 134:45072

    Article  CAS  Google Scholar 

  19. Hadi F, Mohammad F, Mahdi H, Nooshin N (2017) Novel carboxymethyl cellulose polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method. Carbohyd Polym 167:79–89

    Article  CAS  Google Scholar 

  20. Schuman T, Wikstrom M, Rigdahl M (2004) Coating of surface - modified papers with poly(vinyl alcohol). Surf Coat Tech 183:96–105

    Article  CAS  Google Scholar 

  21. Zhai XD, Shi JY, Zou XB, Wang S, Jiang C, Zhang J, Huang X, Zhang W, Holmes M (2017) Novel colorimetric films based on starch/ polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocolloid 69:308–317

    Article  CAS  Google Scholar 

  22. Yu Q, **e A, Huang F, Li S, **ao Y, Shen Y (2017) Photosensitive multifunctional poly(vinyl alcohol) micelles for enhanced antitumor effect. Mater Sci Eng C- Mater 76:918

    Article  CAS  Google Scholar 

  23. Mallakpour S, Motirasoul F (2017) Use of PVA/alpha-MnO2-stearic acid nanocomposite films prepared by sonochemical method as a potential sorbent for adsorption of Cd (II) ion from aqueous solution. Ultrason Sonochem 37:623–633

    Article  CAS  PubMed  Google Scholar 

  24. Ni F, Wang GC, Zhao HB (2017) Fabrication of water-soluble poly(vinylalcohol)-based composites with improved thermal behavior for potential three-dimensional printing application. J Appl Polym Sci 134:44966

    Article  Google Scholar 

  25. Anwar H, Ahmad M, Minhas MU, Rehmani S (2017) Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, Optimization and in-vitro characterization. Carbohyd Polym 166:183–194

    Article  CAS  Google Scholar 

  26. Wang YX, Chang CY, Zhang LN (2010) Effects of freezing/thawing cycles and cellulose nanowhiskers on structure and properties of biocompatible starch/pva sponges. Macromol Mater Eng 295:137–145

    Article  CAS  Google Scholar 

  27. Gonzalez JS, Maiolo AS, Hoppe CE, Alvarez VA (2012) Composite gels based on poly (vinylalcohol) for biomedical uses. Proc Mater Sci 1:483–490

    Article  CAS  Google Scholar 

  28. Mário APN, Hélder VR, Pedro CBF, Ribeiro MHL (2010) Immobilization of naringinase in PVA–alginate matrix using an innovative technique. Appl Biochem Biotechnol 160:2129–2147

    Article  CAS  Google Scholar 

  29. Karimi A, Navidbakhsh M, Haghi AM (2014) An experimental study on the structural and mechanical properties of polyvinyl alcohol sponge using different stress-strain definitions. Adv Polym Tech 33:21441

    Article  CAS  Google Scholar 

  30. Karimi A, Navidbakhsh M, Alizadeh M, Razaghi R (2014) A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions. Biomed Tech 59:439–446

    Article  CAS  Google Scholar 

  31. Cheng C, Wang J, Yang X, Li A, Philippe C (2014) Adsorption of Ni(II) and Cd(II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption. J Hazard Mater 264:332–341

    Article  CAS  PubMed  Google Scholar 

  32. Pan Y, Liu Z, Wang W, Peng C, Shi K, Ji X (2016) Highly effcient macroporous adsorbents for toxic metal ions in water systems based on polyvinyl alcohol–formaldehyde sponges. J Mater Chem A 4:2537–2541

    Article  CAS  Google Scholar 

  33. Barachini S, Danti S, Pacini S, D’Alessandro D, Carnicelli V, Trombi L, Moscato S, Mannari C, Cei S, Petrini M (2014) Plasticity of human dental pulp stromal cells with bioengineering platforms: a versatile tool for regenerative medicine. Micron 67:155–168

    Article  CAS  PubMed  Google Scholar 

  34. Cheng Z, Liao J, He B, Zhang F, Zhang F, Huang X, Zhou L (2015) One-step fabrication of grapheme-oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. ACS Sustain Chem Eng 3:1677–1685

    Article  CAS  Google Scholar 

  35. Hyo** P, Dukjoon K (2006) Swelling and mechanical properties of glycol chitosan/poly (vinyl alcohol) IPN-type superporous hydrogels. J Biomed Mater Res A 78:662–667

    Google Scholar 

  36. Sharmila C, Vinuppriya R, Selvi C, **cy C, Chandarshekar B (2016) Biosynthesis of PVA encapsulated silver nanoparticles. J Appl Res Technol 14:319–324

    Article  Google Scholar 

  37. Yao L, Haas TW, Guiseppi-Elie A, Bowlin GL, Simpson DG, Wnek GE (2003) Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers. Chem Mat 15:1860–1864

    Article  CAS  Google Scholar 

  38. Li YB, Yao S (2017) High stability under extreme condition of the poly(vinyl alcohol) nanofibers crosslinked by glutaraldehyde in organic medium. Polym Degrad Stabil 137:229–237

    Article  CAS  Google Scholar 

  39. Mallakpour S, Ezhieh AN (2017) Preparation and characterization of chitosan-poly (vinyl alcohol) nanocomposite films embedded with functionalized multi-walled carbon nanotube. Carbohyd Polym 166:377–386

    Article  CAS  Google Scholar 

  40. Ashwini K, Awanish K (2017) Development and characterization of tripolymeric and bipolymeric composite films using glyoxal as a potent crosslinker for biomedical application. Mater Sci Eng C 73:333–339

    Article  CAS  Google Scholar 

  41. Destaye AG, Lin CK, Lee CK (2013) Glutaraldehyde vapor cross-linked nanofibrous PVA mat with in situ formed silver nanoparticles. ACS Appl Mater Interfaces 5:4745–4752

    Article  CAS  PubMed  Google Scholar 

  42. Sonker AK, Wagner HD, Bajpai R, Tenne R, Sui XM (2016) Effects of tungsten disulphide nanotubes and glutaric acid on the thermal and mechanical properties of polyvinyl alcohol. Compos Sci Technol 127:47–53

    Article  CAS  Google Scholar 

  43. Sonker AK, Tiwari N, Nagarale RK, Verma V (2016) Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties. J Polym Sci Pol Chem 54:2515

    Article  CAS  Google Scholar 

  44. Li J, Li Y, Niu S, Liu J, Wang L (2007) Synthesis of a new “green” sponge via transesterification of dimethyl carbonate with polyvinyl alcohol and foaming approach. J Porous Mater 1–10

  45. Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohyd Polym 73:8–17

    Article  CAS  Google Scholar 

  46. Zhang CH, Yang FL, Wang WJ, Chen B (2008) Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol). Sep Purif Technol 61:276–286

    Article  CAS  Google Scholar 

  47. Marcilli RHM, de Oliveira MG (2014) Nitric oxide-releasing poly(vinyl alcohol) film for increasing dermal vasodilation. Colloid Surf B 116:643–651

    Article  CAS  Google Scholar 

  48. Tang Q, Huang K, Qian GQ, Benicewicz BC (2013) Phosphoric acid-imbibed three-dimensional polyacrylamide/poly(vinyl alcohol) hydrogel as a new class of high-temperature proton exchange membrane. J Power Sources 229:36–41

    Article  CAS  Google Scholar 

  49. Gouda ME, Badr SK, Hassan MA, Sheha E (2011) Impact of ethylene carbonate on electrical properties of PVA/(NH4)2SO4/H2SO4 proton-conductive membrane. Ionics 17:255–261

    Article  CAS  Google Scholar 

  50. Kim DS, Park HB, Rhim JW, Lee YM (2004) Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membrane Sci 240:37–48

    Article  CAS  Google Scholar 

  51. Rhim JW, Park HB, Lee CS, Jun JH, Kim DS, Lee YM (2004) Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. J Membrane Sci 238:143–151

    Article  CAS  Google Scholar 

  52. Liu LQ, Barber AH, Nuriel S, Wagner HD (2005) Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol) nanocomposites. Adv Funct Mater 15:975–980

    Article  CAS  Google Scholar 

  53. Carol L, Jord M, Catal R, Gavara R, Muňoz PH (2011) Development of active polyvinyl alcohol/β-cyclodextrin composites to scavenge undesirable food components. J Agric Food Chem 59:11026–11033

    Article  CAS  Google Scholar 

  54. Ma CB, Du BJ, Wang EK (2017) Self-crosslink method for a straightforward synthesis of poly(vinyl alcohol)-based aerogel assisted by carbon nanotube. Adv Funct Mater 27:1–8

    Article  Google Scholar 

  55. Li Y, Song Y, Li J, Li Y, Li N, Niu S (2018) A scalable ultrasonic-assisted and foaming combination method preparation polyvinyl alcohol/phytic acid polymer sponge with thermal stability and conductive capability. Ultrason Sonochem 42:18–25

    Article  CAS  PubMed  Google Scholar 

  56. Daneluti ALM, Matos JR (2013) Study of thermal behavior of phytic acid. Braz J Pharm Sci 49(2):275–283

    Article  CAS  Google Scholar 

  57. Reda SY (2011) Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil. Cienc Tecnol Aliment 31(2):475–480

    Article  Google Scholar 

  58. Siderius DW, Mahynski NA, Shen VK (2017) Relationship between Pore-size Distribution and Flexibility of Adsorbent Materials: Statistical Mechanics and Future Material Characterization Technique. Adsorption 23(4):593–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zaleski R, Stefaniak W, Maciejewska M, Goworek J (2009) Porosity of polymer materials by various techniques. J Porous Mater 16:691–698

    Article  CAS  Google Scholar 

  60. Yang RT (2003) Adsorbents: Fundamentals and Applications. Wiley Interscience, New York

    Book  Google Scholar 

Download references

Acknowledgements

A.K.O. acknowledges Gladiya Mani (Mahatma Gandhi University, Kottayam) for hel** with BET measurements and University Grants Commission-Basic Science Research for fellowship.

Funding

This work was supported by University Grants Commission, New Delhi (through the "University with Potential for Excellence" and "Career Advancement Scheme" programs) and the Department of Science and Technology, New Delhi (through the "Promotion of University Research and Scientific Excellence" and "Funds for Infrastructure in Science and Technology" programs) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnamurthi Muralidharan.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 281 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othayoth, A.K., Paul, S. & Muralidharan, K. Polyvinyl alcohol-phytic acid polymer films as promising gas/vapor sorption materials. J Polym Res 28, 249 (2021). https://doi.org/10.1007/s10965-021-02603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02603-0

Keywords

Navigation