Log in

Experimental study on pure-shear-like cyclic deformation of VHB 4910 dielectric elastomer

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The cyclic deformation of VHB 4910 dielectric elastomer is experimentally investigated by performing a series of strain-controlled and stress-controlled pure-shear-like cyclic tests at room temperature. In the strain-controlled cyclic tests, obvious Mullins effect is observed in the first cycle, and continuous stress softening is characterized in the subsequent cycles; the Mullins effect and continuous stress softening are intensified by prescribing larger peak strains and higher strain rates. In the stress-controlled cyclic tests, remarkable ratchetting takes place, and its evolution becomes more significant if higher stress levels, lower stress rates and longer hold time at peak stress are prescribed. Moreover, a partial recovery of residual strain indicates that, besides obvious hyper-elasticity, the VHB 4910 dielectric elastomer also exhibits both recoverable viscoelasticity and measurable irrecoverable visco-plasticity during the cyclic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Pelrine R, Kornbluh R, Pei QB, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454):836–839

    Article  CAS  Google Scholar 

  2. Carpi F, De Rossi D, Kornbluh R, Pelrine RE, Sommer-Larsen P (2008) Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier

  3. Li T, Keplinger C, Baumgartner R, Bauer S, Yang W, Suo Z (2013) Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J Mech Phys Solids 61(2):611–628

    Article  Google Scholar 

  4. Gu G-Y, Zhu J, Zhu L-M, Zhu X (2017) A survey on dielectric elastomer actuators for soft robots. Bioinspiration & Biomimetics 12(1)

  5. Li T, Li G, Liang Y, Cheng T, Dai J, Yang X, Liu B, Zeng Z, Huang Z, Luo Y, **e T, Yang W (2017) Fast-moving soft electronic fish. Sci Adv 3(4):e1602045

    Article  Google Scholar 

  6. Wissler M, Mazza E (2005) Modeling of a pre-strained circular actuator made of dielectric elastomers. Sensors Actuators A Phys 120(1):184–192

    Article  CAS  Google Scholar 

  7. Kofod G (2001) Dielectric elastomer actuators: Ph. D. Thesis. The Technical University of Denmark

  8. Gao Z, Tuncer A, Cuitiño AM (2011) Modeling and simulation of the coupled mechanical–electrical response of soft solids. Int J Plast 27(10):1459–1470

    Article  Google Scholar 

  9. Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523

    Article  CAS  Google Scholar 

  10. Treloar L (1944) Stress-strain data for vulcanised rubber under various types of deformation. Trans Faraday Soc 40:59–70

    Article  CAS  Google Scholar 

  11. Schmidt A, Rothemund P, Mazza E (2012) Multiaxial deformation and failure of acrylic elastomer membranes. Sensors Actuators A Phys 174:133–138

    Article  CAS  Google Scholar 

  12. Wissler M, Mazza E (2007) Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sensors Actuators A Phys 134(2):494–504

    Article  CAS  Google Scholar 

  13. Sahu RK, Patra K (2016) Rate-dependent mechanical behavior of VHB 4910 elastomer. Mech Adv Mater Struct 23(2):170–179

    Article  Google Scholar 

  14. Sahu RK, Patra K, Szpunar J (2015) Experimental study and numerical modelling of creep and stress relaxation of dielectric elastomers. Strain 51(1):43–54

    Article  CAS  Google Scholar 

  15. Michel S, Zhang XQ, Wissler M, Löwe C, Kovacs G (2010) A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators. Polym Int 59(3):391–399

    Article  CAS  Google Scholar 

  16. Hossain M, Vu DK, Steinmann P (2012) Experimental study and numerical modelling of VHB 4910 polymer. Comput Mater Sci 59:65–74

    Article  CAS  Google Scholar 

  17. Qu S, Li K, Li T, Jiang H, Wang M, Li Z (2012) Rate dependent stress-stretch relation of dielectric elastomers subjected to pure shear like loading and electric field. Acta Mech Solida Sin 25(5):542–549

    Article  Google Scholar 

  18. Hossain M, Vu DK, Steinmann P (2015) A comprehensive characterization of the electro-mechanically coupled properties of VHB 4910 polymer. Arch Appl Mech 85(4):523–537

    Article  Google Scholar 

  19. Fan W, Wang Y, Cai S (2017) Fatigue fracture of a highly stretchable acrylic elastomer. Polym Test 61:373–377

    Article  CAS  Google Scholar 

  20. Yu W, Chen X, Wang Y, Yan L, Bai N (2008) Uniaxial ratchetting behavior of vulcanized natural rubber. Polym Eng Sci 48(1):191–197

    Article  Google Scholar 

  21. Chen K, Kang G, Lu F, Jiang H (2015) Uniaxial cyclic deformation and internal heat production of ultra-high molecular weight polyethylene. J Polym Res 22(11)

  22. Chen Y, Kang G, Yuan J, Yu C (2018) Uniaxial ratchetting of filled rubber: experiments and damage-coupled hyper-viscoelastic-plastic constitutive model. J Appl Mech 85(6):061013

    Article  Google Scholar 

  23. Treloar L (1943) The elasticity of a network of long-chain molecules—II. Trans Faraday Soc 39:241–246

    Article  CAS  Google Scholar 

  24. Yeoh O (2001) Analysis of deformation and fracture of ‘pure shear’rubber testpiece. Plast Rubber Compos 30(8):389–397

    Article  CAS  Google Scholar 

  25. Federico C, Iain A, Siegfried B, Gabriele F, Giuseppe G, Massimiliano G, Christian G, Claire J-M, William K, Guggi K, Matthias K, Roy K, Benny L, Marc M, Silvain M, Stephan N, Benjamin OB, Qibing P, Ron P, Björn R, Samuel R, Herbert S (2015) Standards for dielectric elastomer transducers. Smart Mater Struct 24(10):105025

    Article  Google Scholar 

  26. Vertechy R, Fontana M, Stiubianu G, Cazacu M (2014) Open-access dielectric elastomer material database. In electroactive polymer actuators and devices. Proc of SPIE, San Diego, California. https://doi.org/10.1117/12.2045053

  27. Zhou J, Jiang L, Khayat RE (2018) A micro–macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity. Journal of the Mechanics and Physics of Solids 110:137–154. https://doi.org/10.1016/j.jmps.2017.09.016

    Article  CAS  Google Scholar 

  28. Diani J, Fayolle B, Gilormini P (2009) A review on the Mullins effect. Eur Polym J 45(3):601–612

    Article  CAS  Google Scholar 

  29. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42(1):339–362

    Article  CAS  Google Scholar 

  30. Qi HJ, Boyce MC (2005) Stress–strain behavior of thermoplastic polyurethanes. Mech Mater 37(8):817–839

    Article  Google Scholar 

  31. Lu T, Wang J, Yang R, Wang T (2017) A constitutive model for soft materials incorporating viscoelasticity and Mullins effect. J Appl Mech 84(2):021010

    Article  Google Scholar 

  32. Kang G (2008) Ratchetting: recent progresses in phenomenon observation, constitutive modeling and application. Int J Fatigue 30(8):1448–1472

    Article  CAS  Google Scholar 

  33. Fan F, Szpunar J (2015) Characterization of viscoelasticity and self-healing ability of VHB 4910. Macromol Mater Eng 300(1):99–106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (11272269 and 11572265), the Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, China (SZDLH-1702) and Doctoral Innovation Fund Program of Southwest Jiaotong University (D-CX201837).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Kang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Kang, G., Yuan, J. et al. Experimental study on pure-shear-like cyclic deformation of VHB 4910 dielectric elastomer. J Polym Res 26, 186 (2019). https://doi.org/10.1007/s10965-019-1858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1858-6

Keywords

Navigation