Log in

Shannon–McMillan–Breiman Theorem Along Almost Geodesics in Negatively Curved Groups

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Consider a non-elementary Gromov-hyperbolic group \(\Gamma \) with a suitable invariant hyperbolic metric, and an ergodic probability measure preserving (p.m.p.) action on \((X,\mu )\). We construct special increasing sequences of finite subsets \(F_n(y)\subset \Gamma \), with \((Y,\nu )\) a suitable probability space, with the following properties.

  • Given any countable partition \(\mathcal {P}\) of X of finite Shannon entropy, the refined partitions \(\bigvee _{\gamma \in F_n(y)}\gamma \mathcal {P}\) have normalized information functions which converge to a constant limit, for \(\mu \)-almost every \(x\in X\) and \(\nu \)-almost every \(y\in Y\).

  • The sets \(\mathcal {F}_n(y)\) constitute almost-geodesic segments, and \(\bigcup _{n\in \mathbb {N}} F_n(y)\) is a one-sided almost geodesic with limit point \(F^+(y)\in \partial \Gamma \), starting at a fixed bounded distance from the identity, for almost every \(y\in Y\).

  • The distribution of the limit point \(F^+(y)\) belongs to the Patterson–Sullivan measure class on \(\partial \Gamma \) associated with the invariant hyperbolic metric.

The main result of the present paper amounts therefore to a Shannon–McMillan–Breiman theorem along almost-geodesic segments in any p.m.p. action of \(\Gamma \) as above. For several important classes of examples we analyze, the construction of \(F_n(y)\) is purely geometric and explicit. Furthermore, consider the infimum of the limits of the normalized information functions, taken over all \(\Gamma \)-generating partitions of X. Using an important inequality due to Seward (Weak containment and Rokhlin entropy, arxiv:1602.06680, 2016), we deduce that it is equal to the Rokhlin entropy \(\mathfrak {h}^{\text {Rok}}\) of the \(\Gamma \)-action on \((X,\mu )\) defined in Seward (Invent Math 215:265–310, 2019), provided that the action is free. Remarkably, this property holds for every choice of invariant hyperbolic metric, every choice of suitable auxiliary space \((Y,\nu )\) and every choice of special family \(F_n(y)\) as above. In particular, for every \(\epsilon > 0\), there is a generating partition \(\mathcal {P}_\epsilon \), such that for almost every \(y\in Y\), the partition refined using the sets \(F_n(y)\) has most of its atoms of roughly constant measure, comparable to \(\exp (-n\mathfrak {h}^{\text {Rok}}\pm \epsilon )\). This describes an approximation to the Rokhlin entropy in geometric and dynamical terms, for actions of word-hyperbolic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abramov, L.M., Rokhlin, V.A.: The entropy of a skew product of measure-preserving transformations. A.M.S. Trans. Ser. 2 48, 225–265 (1965)

    Google Scholar 

  2. Bader, U., Furman, A.: Some ergodic properties of metrics on hyperbolic groups. Math. Ar**v:1707.02020 (2017)

  3. Bader, U. and Furman, A., Some ergodic properties of metrics on hyperbolic groups. Revised version, in preparation, 2022

  4. Bowen, L.: Measure conjugacy invariants for actions of countable sofic groups. J. Am. Math. Soc. 23, 217–245 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bowen, L.: Sofic entropy and amenable groups. Ergod. Theory Dyn. Syst. 32(2), 427–466 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bowen, L., Nevo, A.: Ergodic theorems beyond amenable groups. Ergod. Theory Dyn. Syst. 33, 777–820 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bowen, L., Nevo, A.: Amenable equivalence relations and the construction of ergodic averages for group actions. J. d’Analyse Math. 126, 359–388 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bowen, L., Nevo, A.: Von-Neumann and Birkhoff ergodic theorems for negatively curved groups. Annales Sci. de l’Ecole Normale Superieure 48, 1113–1149 (2015)

    Article  MathSciNet  Google Scholar 

  9. Connes, A., Feldman, J., Weiss, B.: An amenable equivalence relation is generated by a single transformation. Ergod. Theory Dyn. Syst. 1, 431–450 (1981)

    Article  MathSciNet  Google Scholar 

  10. Bogenschütz, T.: Entropy, pressure, and a variational principle for random dynamical systems. Random Comput. Dyn. 1(1), 99–116 (1992)

    MathSciNet  Google Scholar 

  11. Bogenschütz, T., Crauel, H.: The Abramov-Rokhlin formula. Ergodic theory and related topics, III (Güstrow, 1990), 32-35, Lecture Notes in Math., 1514

  12. Calegari, D.: The ergodic theory of hyperbolic groups. Contemp. Math. 597, 15–52 (2013)

    Article  MathSciNet  Google Scholar 

  13. Coornaert, M.: Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov. Pac. J. Math. 159(2), 241–270 (1993)

    Article  MathSciNet  Google Scholar 

  14. Danilenko, A.: Entropy theory from the orbital point of view. Monatsh. Math. 134, 121–141 (2001)

    Article  MathSciNet  Google Scholar 

  15. Danilenko, A., Park, K.: Generators and Bernoullian factors for amenable actions and cocycles on their orbits. Ergod. Theory Dyn. Syst. 22, 1715–1745 (2002)

    Article  MathSciNet  Google Scholar 

  16. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. John Wiley & Sons Inc., New York (1988)

    Google Scholar 

  17. Furman, A., Weiss, B.: On the ergodic properties of Cartan flows in ergodic actions of \(SL_2({\mathbb{R} })\) and \(SO(n,1)\). Ergod. Theory Dyn. Syst. 17, 1371–1382 (1997)

    Article  Google Scholar 

  18. Ghys, E., de la Harpe, P. (eds.): Sur les groupes hyperboliques d’apres Mikhael Gromov. Birkhauser Boston Inc., Boston (1990)

  19. Grigorchuk, R.: Ergodic theorems for actions of free groups and free semigroups. Math. Notes 65(5), 654–657 (1999)

    Article  MathSciNet  Google Scholar 

  20. Kaimanovich, V.A.: Invariant measures of the geodesic flow and measures at infinity of negatively curved manifolds. Ann. de l’IHP Phys. Theor. 53, 361–393 (1990)

    MathSciNet  Google Scholar 

  21. Kakutani, S.: Random ergodic theorems and Markoff processes with a stable distribution. In: Proceeding 2nd Berkeley Symposium, pp. 247–261 (1951)

  22. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, Cambridge Press, Cambridge (1995)

    Book  Google Scholar 

  23. Kieffer, J.C.: A ratio limit theorem for a strongly subadditive set function in a locally compact amenable group. Pac. J. Math. 61, 183–190 (1975)

    Article  MathSciNet  Google Scholar 

  24. Kifer, Y.: Ergodic theory of random transformations. Progress in Probability and Statistics, vol. 10. Birkhauser, Boston (1986)

    Book  Google Scholar 

  25. Ledrappier, F., Young, L.S.: Entropy formula for random transformations. Probab. Theory Relat. Fields 80, 217–240 (1988)

    Article  MathSciNet  Google Scholar 

  26. Lindenstrauss, E.: Pointwise theorems for amenable groups. Invent. Math. 146, 259–295 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  27. Mihailescu, E., Urbánski, M.: Skew product Smale endomorphisms over countable shifts of finite type. Ergod. Theory Dyn. Syst. 40, 3105–3149 (2020)

    Article  MathSciNet  Google Scholar 

  28. Morita, T.: Entropy of random dynamical systems. Proc. Jpn. Acad. Ser. A Math. Sci. 62, 121–124 (1986)

    Article  MathSciNet  Google Scholar 

  29. Nevo, A., Pogorzelski, F.: The Shannon-McMillan-Breiman theorem beyond amenable groups. Illinois J. Math. 65, 869–905 (2021)

    Article  MathSciNet  Google Scholar 

  30. Ollagnier, J.: Ergodic theory and statistical mechanics. Lecture Notes in Mathematics, vol. 1115. Springer-Verlag, Berlin (1985)

    Book  Google Scholar 

  31. Ornstein, D., Weiss, B.: The Shannon-McMillan-Breiman theorem for a class of amenable groups. Israel J. Math. 44, 53–60 (1983)

    Article  MathSciNet  Google Scholar 

  32. Ornstein, D., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. J. d’Analyse Math. 48, 1–141 (1987)

    Article  MathSciNet  Google Scholar 

  33. Petersen, K.: Ergodic Theory. Cambridge University Press, Cambridge (1983)

    Book  Google Scholar 

  34. Ratcliffe, J.G.: Foundations of hyperbolic manifolds. Graduate Texts in Mathematics, Springer-Verlag, New York (1994)

    Book  Google Scholar 

  35. Rudolph, D.J., Weiss, B.: Entropy and mixing for amenable group actions. Ann. Math. (2) 151(3), 1119–1150 (2000)

    Article  MathSciNet  Google Scholar 

  36. Seward, B.: Krieger’s finite generator theorem for actions of countable groups I. Invent. Math. 215(1), 265–310 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. Seward, B.: Krieger’s finite generator theorem for actions of countable groups II. J. Mod. Dyn. 15, 1–39 (2019)

    MathSciNet  Google Scholar 

  38. Seward, B.: Weak containment and Rokhlin entropy. arxiv:1602.06680 (2016)

  39. Seward, B., Tucker-Drob, R.: Borel structurability on the 2-shift of a countable group. Ann. Pure Appl. Logic 167, 1–21 (2016)

    Article  MathSciNet  Google Scholar 

  40. Sinai, Y.: Topics in ergodic theory. Princeton Mathematical Series, vol. 44. Princeton University Press (1994)

    Google Scholar 

  41. Ulam, S.M., von Neumann, J.: Random ergodic theorems. Bull. Am. Math. Soc. 51(9), 660 (1947)

    Google Scholar 

  42. Walters, P.: Relative pressure, relative equilibrium states, compensation functions and many-to-one codes between subshifts. Trans. Am. Math. Soc. 296, 1–31 (1986)

    Article  MathSciNet  Google Scholar 

  43. Ward, T., Zhang, Q.: The Abramov-Rokhlin entropy addition formula for amenable group actions. Monatshefte Mathematik 114, 317–329 (1992)

    Article  MathSciNet  Google Scholar 

  44. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  45. Weiss, B.: Actions of amenable groups. Top. Dyn. Ergodic Theory 310, 226–262 (2003)

    Article  MathSciNet  Google Scholar 

  46. Zhu, Y.: On local entropy of random transformations. Stoch. Dyn. 8, 197–207 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the research appearing in this paper

Corresponding author

Correspondence to Amos Nevo.

Ethics declarations

Conflict of interest

The authors are not aware of any conflicts of interests pertaining to any aspect of the content or authorship of the present paper. The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both authors gratefully acknowledge partial support through grant no. I-1485-304.6/2019 by the German Israeli Foundation for Scientific Research and Development (GIF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevo, A., Pogorzelski, F. Shannon–McMillan–Breiman Theorem Along Almost Geodesics in Negatively Curved Groups. J Theor Probab 37, 814–859 (2024). https://doi.org/10.1007/s10959-023-01291-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-023-01291-4

Keywords

Mathematics Subject Classification (2020)

Navigation