Log in

Optimal Hardy Inequalities for Schrödinger Operators Based on Symmetric Stable Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Assume that \(\mathcal {L}^{\mu } :=\) \(-(-\Delta )^{\alpha /2}\) \(+ \mu \) is subcritical, where \((-\Delta )^{\alpha /2}\) is the fractional Laplacian and \(\mu \) is a positive smooth measure on \(\mathbb {R}^d\) in the Green-tight Kato class. In this paper, we probabilistically construct a Hardy-weight for a quadratic form \(\mathcal {E}^{\mu }\) associated with \(\mathcal {L}^{\mu }\) which is optimal in a certain sense. As a side product, we characterize the criticality and subcriticality of \(\mathcal {E}^{\mu }\) through Girsanov transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Beldi, A., Belhaj Rhouma, N., BenAmor, A.: Pointwise estimates for the ground state of singular Dirichlet fractional Laplacian. J. Phys. A: Math. Theor. 46, 445201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogdan, K., Dyda, B.: The best constant in a fractional Hardy inequality. Math. Nachr. 284, 629–638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogdan, K., Dyda, B., Kim, P.: Hardy Inequalities and Non-explosion Results for Semigroups. Potential Anal. 44, 229–247 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Z.-Q.: Gaugeability and conditional gaugeability. Trans. Amer. Math. Soc. 354, 4639–4679 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Z.-Q., Fitzsimmons, P.J., Takeda, M., Ying, J., Zhang, T.-S.: Absolute continuity of symmetric Markov processes. Ann. Probab. 32, 2067–2098 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  7. Chen, Z.-Q., Tokle, J.: Global heat kernel estimates for fractional Laplacians in unbounded open sets. Probab. Theory Relat. Fields 149, 373–395 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Devyver, B., Fraas, M., Pinchover, Y.: Optimal Hardy weight for second-order elliptic operator: An answer to a problem of Agmon. J. Funct. Anal. 266, 4422–4489 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Devyver, B., Pinchover, Y.: Optimal \(L^p\) Hardy-type inequalities. Ann. Inst. H. Poincaré Anal. Non Linéare 33, 93–118 (2016)

    Article  MATH  Google Scholar 

  10. Frank, R.L., Lenz, D., Wingert, D.: Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory. J. Funct. Anal. 266, 4765–4808 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, 2nd edn. Walter de Gruyter, Berlin (2011)

    MATH  Google Scholar 

  13. Ganguly, D., Pinchover, Y.: Some new aspects of perturbation theory of positive solutions of second-order linear elliptic equations. Pure Appl. Funct. Anal. 5, 295–319 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Getoor, R. K.: Transience and recurrence of Markov processes, Seminar on Probability, XIV (Paris, 1978/1979), Lecture Notes in Math., vol. 784, pp. 397–409, Springer, Berlin (1980)

  15. He, S.W., Wang, J.G., Yan, J.A.: Semimartingale Theory and Stochastic Calculus. Science Press, Bei**g (1992)

    MATH  Google Scholar 

  16. Ka**o, N.: Equivalence of recurrence and Liouville property for symmetric Dirichlet forms. Math. Phys. Comput. Simul. 20(3), 89–98 (2017)

    Article  MathSciNet  Google Scholar 

  17. Keller, M., Pinchover, Y., Pogorzelski, F.: Optimal Hardy inequalities for Schrödinger operators on graphs. Commun. Math. Phys. 358, 767–790 (2018)

    Article  MATH  Google Scholar 

  18. Kovařík, H., Pinchover, Y.: On minimal decay at infinity of Hardy-weights. Commun. Contemp. Math. 22, 1950046 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuwae, K.: Recurrence and conservativeness of symmetric diffusion processes by Girsanov transformations. J. Math. Kyoto Univ. 37, 735–756 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Kuwae, K.: Stochastic calculus over symmetric Markov processes without time reversal. Ann. Probab. 38, 1532–1569 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuwae, K.: Errata to: Stochastic calculus over symmetric Markov processes without time reversal. Ann. Probab. 40, 2705–2706 (2012)

  22. Miura, Y.: The conservativeness of Girsanov transformed symmetric Markov processes. Tohoku Math. J. 71, 221–241 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miura, Y.: Superharmonic functions of Schrödinger operators and Hardy inequalities. J. Math. Soc. Japan 71, 689–708 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sharpe, M.: General Theory of Markov Processes. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  25. Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potent. Anal. 5, 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Takeda, M.: Criticality and subcriticality of generalized Schrödinger forms. Illinois J. Math. 58, 251–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Takeda, M., Tsuchida, K.: Differentiability of spectral functions for symmetric \(\alpha \)-stable processes. Trans. Amer. Math. Soc. 359, 4031–4054 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Takeda, M., Uemura, T.: Subcriticality and gaugeability for symmetric \(\alpha \)-stable processes. Forum Math. 16, 505–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yafaev, D.: Sharp constants in the Hardy–Rellich inequalities. J. Funct. Anal. 168, 121–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees for their many helpful suggestions on this paper.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, Y. Optimal Hardy Inequalities for Schrödinger Operators Based on Symmetric Stable Processes. J Theor Probab 36, 134–166 (2023). https://doi.org/10.1007/s10959-022-01164-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-022-01164-2

Keywords

Mathematics Subject Classification (2020)

Navigation