Log in

Quasilinear Interpolation by Minimal Splines

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the grid stepsize are established. Results of numerical experiments on approximating some test functions, which demonstrate the effect of choosing a generating vector function in constructing the corresponding minimal spline, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Buhmann and J. Jäger, Quasi-Interpolation, Cambridge University Press (2022).

  2. C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York (2001).

    Google Scholar 

  3. G. Y. Deniskina, Y. I. Deniskin, and Y. I. Bityukov, “About some computational algorithms for local approximation splines, based on the wavelet transformation and convolution,” Lect. Notes Elect. Engin., 729, 182–191 (2021).

    Article  Google Scholar 

  4. A. Yu. Dem’yanovich and V. N. Malozemov, “Jenkins’ functions and minimal splines,” Vestn. S.Peterb. Univ., Ser. 1., 2, No. 8, 38–43 (1998).

  5. Yu. K. Dem’yanovich, “On the construction of spaces of local functions on a nonuniform grid,” Zap. Nauchn. Semin. LOMI, 124, 140–163 (1983).

  6. Yu. K. Dem’yanovich, Local Approximation on a Manifold and Minimal Splines [in Russian], St. Petersburg Univ. Press, St. Petersburg (1994).

  7. Yu. K. Dem’yanovich, Wavelets and Minimal Splines [in Russian], St. Petersburg Univ. Press, St. Petersburg (2003).

  8. Yu. K. Dem’yanovich, Theory of Spline Wavelets [in Russian], St. Petersburg Univ. Press, St. Petersburg (2013).

  9. Yu. K. Dem’yanovich, V. O. Dron’, and O. N. Ivantsova, “Approximation by Bφ-splines,” Vestn. St.Peterburg. Univ., Ser. 10. Prikl. Matem. Inform. Prots. Upr., 3, 67–72 (2013).

  10. Yu. K. Dem’yanovich and A. A. Makarov, “Necessary and sufficient nonnegativity conditions for second-order coordinate trigonometric splines,” Vestn. St.Peterb. Univ., Ser. 1., 4(62), No. 1, 9–16 (2017).

  11. Yu. K. Dem’yanovich and S. G. Mikhlin, “Grid approximation of functions of Sobolev spaces,” Zap. Nauchn. Semin. LOMI, 35, 6–11 (1973).

  12. J. J. Goel, “Construction of basis functions for numerical utilization of Ritz’s method,” Numer. Math., 12, 435–447 (1968).

    Article  MathSciNet  Google Scholar 

  13. O. Kosogorov and A. Makarov, “On some piecewise quadratic spline functions,” Lect. Notes Comput. Sci., 10187, 448–455 (2017).

    Article  MathSciNet  Google Scholar 

  14. E. K. Kulikov and A. A. Makarov, ‘Approximation by hyperbolic splines,” Zap. Nauchn. Semin. POMI, 472, 179–194 (2018); English transl., J. Math. Sci., 240, No. 6, 822–832 (2019).

  15. E. K. Kulikov and A. A. Makarov, “Quadratic minimal splines with multiple nodes,” Zap. Nauchn. Semin. POMI, 482, 220–230 (2019); English transl., J. Math. Sci., 249, No. 2, 256–262 (2020).

  16. E. Kulikov and A. A. Makarov, “On de Boor–Fix type functionals for minimal splines,” in: Topics in Classical and Modern Analysis (Applied and Numerical Harmonic Analysis), 211–225 (2019).

  17. E. Kulikov and A. A. Makarov, “On biorthogonal approximation of solutions of some boundary value problems on Shishkin mesh,” AIP Conf. Proc., 2302, 110005 (2020).

    Article  Google Scholar 

  18. E. K. Kulikov and A. A. Makarov, “On a modified spline collocation method for solving the Fredholm integral equation,” Diff. Uravn. Prots. Upr., 4, 211–223 (2021).

    MathSciNet  Google Scholar 

  19. E. K. Kulikov and A. A. Makarov, “A method for solving the Fredholm integral equation of the first kind,” Zap. Nauchn. Semin. POMI, 514, 113–125 (2022); English transl., J. Math. Sci., 272, No. 4, 558–565 (2023).

  20. V. L. Leontiev, “Orthogonal splines in approximation of functions,” Math. Statistic, 8, No. 2, 167–172 (2020).

    Article  Google Scholar 

  21. A. A. Makarov, “Construction of splines of maximal smoothness,” Probl. Mat. Anal., 60, 25–38 (2011).

    MathSciNet  Google Scholar 

  22. A. A. Makarov, “Biorthogonal systems of functionals and decomposition matrices for minimal splines,” Ukr. Mat. Visn., 9, No. 2, 219–236 (2012).

    MathSciNet  Google Scholar 

  23. A. A. Makarov, “On functionals dual to minimal splines,” Zap. Nauchn. Semin. POMI, 453, 198–218 (2016); English transl., J. Math. Sci., 224, No. 6, 942–955 (2017).

  24. A. A. Makarov, “On an example of circular arc approximation by quadratic minimal splines,” Poincaré J. Anal. Appl., 2(II), 103–107 (2018).

  25. S. G. Mikhlin, “Variational-grid approximation,” Zap. Nauchn. Semin. LOMI, 48, 32–188 (1974).

    Google Scholar 

  26. V. S. Ryaben’ky, Stability of Finite-Difference Equations [in Russian], Dis. kand. fiz.-mat. nauk, Moscow (1952).

  27. I. J. Schoenberg, “Contributions to the problem of approximation of equidistant data by analytic functions,” Quart. Appl. Math., 4, 45–99, 112–141 (1946).

    Article  MathSciNet  Google Scholar 

  28. L. L. Schumaker, Spline Functions: Computational Methods, Society for Industrial and Applied Mathematics (2015).

  29. B. M. Shumilov, E. A. Esharov, and N. K. Arkabaev, “Construction and optimization of forecasts based on recurrent splines of the first degree,” Sib. Zh. Vychisl. Matem., 13, No. 2, 227–241 (2010).

    Google Scholar 

  30. G. Strang and G. Fix, “Fourier analysis of the finite element method in Ritz–Galerkin theory,” Stud. Appl. Math., 48, No. 3, 265–273 (1969).

    Article  MathSciNet  Google Scholar 

  31. G. Strand and J. Fix, Theory of the Finite-Element Method [in Russian], Moscow (1977).

  32. Yu. S. Volkov and V. V. Bogdanov, “Error estimates for the simplest local approximation by splines,” Sib. Matem. Zh., 61, No. 5, 1000–1008 (2020).

  33. I. V. Yuyukin, “Interpolation of a navigation function by Lagrangian splines,” Vestn. Gos. Univ. Morsk. Rechn. Flota, 12, No. 1, 57–70 (2020).

    Google Scholar 

  34. A. I. Zadorin, “Interpolation method for a function with a singular component,” Lect. Notes Comput. Sci., 5434, 612–619 (2009).

    Article  Google Scholar 

  35. Yu. S. Zavyalov, B. I. Kvasov, and V. L. Miroshnichenko, Methods of Spline Functions [in Russian], Moscow (1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Livshits.

Additional information

To the memory of Yuri Kazimirovich Dem’yanovich

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 524, 2023, pp. 94–111.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livshits, L.P., Makarov, A.A. & Makarova, S.V. Quasilinear Interpolation by Minimal Splines. J Math Sci 281, 285–296 (2024). https://doi.org/10.1007/s10958-024-07101-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-07101-4

Navigation