Log in

Random Section and Random Simplex Inequality

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let K\({\mathbb{R}}^{d}\) be a convex body. Let X1, . . . , Xk, where kd, be random points independently and uniformly chosen in K, and let ξk be a uniformly distributed random linear k-plane. It is proved that if p ≥ −d + k + 1, then

\({\mathbb{E}}{\left|K\cap {\xi }_{k}\right|}^{d+p}\le {c}_{d,k,p}\cdot {\left|K\right|}^{k}{\mathbb{E}}{\left|{\text{conv}}\left(0,{X}_{1},\dots ,{X}_{k}\right)\right|}^{p},\)

where | · | and conv denote the volume of the corresponding dimension and the convex hull, respectively. The constant cd,k,p is such that if k > 1, then the equality holds if and only if K is an ellipsoid centered at the origin, and if k = 1, then the inequality turns to equality.

The inequality reduces to the Busemann intersection inequality if p = 0 and to the Busemann random simplex inequality if k = d.

An affine version of this inequality which in a similar way generalizes the Schneider inequality and the Blaschke-Grömer inequality is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Busemann, “Volume in terms of concurrent cross-sections,” Pacific J. Math., 3, 1–12 (1953).

    Article  MathSciNet  Google Scholar 

  2. H. Busemann, The Geometry of Geodesics, Academic Press Inc., New York, N. Y. (1955).

    Google Scholar 

  3. H. Busemann and E. G. Straus, “Area and normality,” Pacific J. Math., 10, 35–72 (1960).

    Article  MathSciNet  Google Scholar 

  4. G. D. Chakerian, “Inequalities for the difference body of a convex body,” Proc. Amer. Math. Soc., 18, 879–884 (1967).

    Article  MathSciNet  Google Scholar 

  5. M. Crofton, “Probability,” in: Encyclopaedia Brittanica, 19 (1985), pp. 758–788.

    Google Scholar 

  6. S. Dann, G. Paouris, and P. Pivovarov, “Bounding marginal densities via affine isoperimetry,” Proc. Lond. Math. Soc. (3), 113, No. 2, 140–162 (2016).

  7. H. Furstenberg and I. Tzkoni, “Spherical functions and integral geometry,” Israel J. Math., 10, 327–338 (1971).

    Article  MathSciNet  Google Scholar 

  8. R. J. Gardner, “The dual Brunn-Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalities,” Adv. Math., 216, No. 1, 358–386 (2007).

    Article  MathSciNet  Google Scholar 

  9. F. Götze, A. Gusakova, and D. Zaporozhets, “Random affine simplexes,” J. Appl. Probab., 56, No. 1, 39–51 (2019).

    Article  MathSciNet  Google Scholar 

  10. E. L. Grinberg, “Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies,” Math. Ann., 291, No. 1, 75–86 (1991).

    Article  MathSciNet  Google Scholar 

  11. H. Groemer, “On some mean values associated with a randomly selected simplex in a convex set,” Pacific J. Math., 45, 525–533 (1973).

    Article  MathSciNet  Google Scholar 

  12. H. Hadwiger, “Ueber zwei quadratische Distanzintegrale für Eikörper,” Arch. Math. (Basel), 3, 142–144 (1952).

    Article  MathSciNet  Google Scholar 

  13. J. F. C. Kingman, “Random secants of a convex body,” J. Appl. Probability, 6, 660–672 (1969).

    Article  MathSciNet  Google Scholar 

  14. R. Schneider, “Inequalities for random flats meeting a convex body,” J. Appl. Probab., 22, No. 3, 710–716 (1985).

    Article  MathSciNet  Google Scholar 

  15. R. Schneider and W. Weil, Stochastic and Integral Geometry, Springer-Verlag, Berlin (2008).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Litvak.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 505, 2021, pp. 162–171.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvak, A.E., Zaporozhets, D.N. Random Section and Random Simplex Inequality. J Math Sci 281, 111–117 (2024). https://doi.org/10.1007/s10958-024-07079-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-07079-z

Navigation