Log in

Construction of Approximation Functionals for Minimal Splines

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This paper presents formulas for constructing quadratic minimal splines, which explicitly depend on the components of a generating vector function. Formulas for various approximation functionals for minimal splines used as coefficients in local approximation methods are obtained. Examples of special cases of approximation schemes, known as quasi-interpolation, are provided. Results of numerical experiments on approximating a circular arc by minimal splines are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. S. Volkov and Yu. N. Subbotin, “Fifty years of Schoenberg’s problem on the convergence of spline interpolation,” Tr. Inst. Mat. Mekh., 20, No. 1, 52–67 (2014).

    Google Scholar 

  2. Yu. S. Volkov and V. T. Shevaldin, “Shape-preserving conditions for interpolation with quadratic splines,” Tr. Inst. Mat. Mekh., 18, No. 4, 145–152 (2012).

    Google Scholar 

  3. S. B. Stechkin and Yu. N. Subbotin, Splines in Computational Mathematics [in Russian], Moscow (1976).

  4. Yu. S. Zavyalov, B. I. Kvasov, and V. L. Miroshnichenko, Methods of Spline Functions [in Russian], Moscow (1980).

  5. L. L. Schumaker, Spline Functions: Basic Theory, John Wiley and Sons, Inc., New York (1981).

  6. Yu. K. Demyanovich, Local Approximation on a Manifold and Minimal Splines [in Russian], St. Petersburg Univ. Press, St. Petersburg (1994).

    Google Scholar 

  7. C. de Boor, A Practical Guide to Splines (Revised edition), Springer-Verlag, New York (2001).

  8. B. I. Kvasov, Methods of Shape Preserving Spline Approximation [in Russian], Fizmatlit, Moscow (2006).

    MATH  Google Scholar 

  9. I. G. Burova and Yu. K. Demyanovich, Minimal Splines and Applications [in Russian], St. Petersburg Univ. Press, St. Petersburg (2010).

    Google Scholar 

  10. A. I. Grebennikov, Spline Methods and Solutions of Ill-Posed Problems in Approximation Theory [in Russian], Moscow Univ. Press, Moscow (1983).

    MATH  Google Scholar 

  11. T. Lyche and L. L. Shumaker, “Quasi-interpolants based on trigonometric splines,” J. Approx. Theor., 95, 280–309 (1998).

    Article  MathSciNet  Google Scholar 

  12. P. Sablonniere, “Quadratic spline quasi-interpolants on bounded domains of ℝd, d = 1, 2, 3,” Rend. Sem. Mat., 61, No. 3, 229–246 (2003).

    MathSciNet  MATH  Google Scholar 

  13. T. Lyche and K. Mörken, Spline Methods. Draft, Centre Math. Applications University of Oslo (2005).

  14. P. Constantini, C. Manni, F. Pelosi, and M. Lucia Sampoli, “Quasi-interpolation in isogeometric analysis based on generalized B-splines,” Comput Aided Geom. Design, 27, No. 8, 655–668 (2010).

    MathSciNet  MATH  Google Scholar 

  15. A. A. Makarov, “Biorthogonal systems of functionals and decomposition matrices for minimal splines,” Ukr. Mat. Visn., 9, No. 2, 219–236 (2012).

    MathSciNet  MATH  Google Scholar 

  16. Y. Jiang and Y. Xu, “B-spline quasi-interpolation on sparse grids,” J. Complexity, 27, No. 5, 466–488 (2014).

    Article  MathSciNet  Google Scholar 

  17. W. Gao and Z.Wu, “A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines,” J. Comput. Appl. Math., 271, 20–30 (2014).

    Article  MathSciNet  Google Scholar 

  18. M. Li, L. Chen, and Q. Ma, “A meshfree quasi-interpolation method for solving Burger’s equation,” Comput. Meth. Eng. Sci., 2014, No. 3, 1–8 (2014).

    Google Scholar 

  19. R. G. Yu, R. H. Wang, and C. G. Zhu, “A numerical method for solving KdV equation with multilevel B-spline quasi-interpolation,” Appl. Anal., 92, No. 8, 1682–1690 (2013).

    Article  MathSciNet  Google Scholar 

  20. C. Dagnino, S. Remogna, and P. Sablonniere, “On the solution of Fredholm integral equations based on spline quasi-interpolating projectors,” BIT Numer. Math., 54, No. 4, 979–1008 (2014).

    Article  MathSciNet  Google Scholar 

  21. M. Derakhshan and M. Zarebnia, “On the numerical treatment and analysis of twodimensional Fredholm integral equations using quasi-interpolant,” Comp. Appl. Math., 39, 106 (2020).

    Article  Google Scholar 

  22. P. Sablonnière, D. Shibih, and T. Mohamed, “Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell–Sabin partitions,” BIT Numer. Math., 53, No. 1, 175–192 (2013).

  23. L. Lu, “On polynomial approximation of circular arcs and helices,” Comput. Math. Appl., 63, 1192–1196 (2012).

    Article  MathSciNet  Google Scholar 

  24. G. Jaklič, “Uniform approximation of a circle by a parametric polynomial curve,” Computer Aided Geom. Design, 41, 36–46 (2016).

    Article  MathSciNet  Google Scholar 

  25. A. Rababah, “The best uniform cubic approximation of circular arcs with high accuracy,” Commun. Math. Appl., 7, No. 1, 37–46 (2016).

    MathSciNet  MATH  Google Scholar 

  26. C. Apprich, A. Dietrich, K. Höllig, and E. Nava-Yazdani, “Cubic spline approximation of a circle with maximal smoothness and accuracy,” Computer Aided Geom. Design, 56, 1–3 (2017).

    Article  MathSciNet  Google Scholar 

  27. A. A. Makarov, “On an example of circular arc approximation by quadratic minimal splines,” Poincaré Anal. Appl., 2018, No. 2, 103–107 (2018).

    MathSciNet  MATH  Google Scholar 

  28. Yu. K. Demyanovich, “Smoothness of spline spaces and wavelets decompositions,” Dokl. RAN, 401, No. 4, 1–4 (2005).

    MathSciNet  Google Scholar 

  29. Yu. K. Dem’yanovich and A. A. Makarov, “Necessary and sufficient nonnegativity conditions for second-order coordinate trigonometric splines,” Vest. St.Petersburg Univ., Ser. 1, 4(62), No. 1, 9–16 (2017).

  30. O. Kosogorov and A. Makarov, “On some piecewise quadratic spline functions,” Lect. Notes Comput. Sci., 10187, 448–455 (2017).

    Article  MathSciNet  Google Scholar 

  31. A. A. Makarov, “Construction of splines of maximal smoothness,” Probl. Mat. Anal., 60, 25–38 (2011).

    MathSciNet  MATH  Google Scholar 

  32. A. A. Makarov, “On functionals dual to minimal splines,” Zap. Nauchn. Semin. POMI, 453, 198–218 (2016); English transl., J. Math. Sci., 224, No. 6, 942–955 (2017).

  33. E. K. Kulikov and A. A. Makarov, “On de Boor–Fix type functionals for minimal splines,” in: Topics in Classical and Modern Analysis (Applied and Numerical Harmonic Analysis) (2019), pp. 211–225.

  34. E. K. Kulikov and A. A. Makarov, “On approximation by hyperbolic splines,” Zap. Nauchn. Semin. POMI, 472, 179–194 (2018); English transl., J. Math. Sci., 240, No. 6, 822–832 (2019).

  35. E. K. Kulikov and A. A. Makarov, “On approximate solution of a singular perturbation boundary-value problem,” Diff. Uravn. Prots. Upr., No. 1, 91–102 (2020).

  36. E. Kulikov and A. Makarov, “On biorthogonal approximation of solutions of some boundary value problems on Shishkin mesh,” AIP Conference Proceedings, 2302, 110005 (2020).

    Article  Google Scholar 

  37. E. K. Kulikov and A. A. Makarov, “Quadratic minimal splines with multiple nodes,” Zap. Nauchn. Semin. POMI, 482, 220–230 (2019); English transl., J. Math. Sci., 249, No. 2, 256–262 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. K. Kulikov or A. A. Makarov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 504, 2021, pp. 136–156.

Translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, E.K., Makarov, A.A. Construction of Approximation Functionals for Minimal Splines. J Math Sci 262, 84–98 (2022). https://doi.org/10.1007/s10958-022-05801-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-05801-3

Navigation