Log in

A Note on a Local Combinatorial Formula for the Euler Class of a PL Spherical Fiber Bundle

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We present a local combinatorial formula for the Euler class of an n-dimensional PL spherical fiber bundle as a rational number eCH associated to a chain of n + 1 abstract subdivisions of abstract n-spherical PL cell complexes. The number eCH is a combinatorial (or matrix) Hodgetheoretic twisting cochain in Guy Hirsch’s homology model of the bundle associated with the PL combinatorics of the bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Akyar and J. L. Dupont, “Lattice gauge field theory and prismatic sets,” Math. Scand., 108, No. 1, 26–54 (2011).

    Article  MathSciNet  Google Scholar 

  2. L. Berg, “Three results in connection with inverse matrices,” Linear Algebra Appl., 84, 63–77 (1986).

    Article  MathSciNet  Google Scholar 

  3. N. A. Berikašvili, “Differentials of a spectral sequence,” Proc. A. Razmadze Math. Inst., 51, 5–106 (1976).

    MathSciNet  Google Scholar 

  4. N. Berikashvili, “A local system of spaces and a bigraded model of fibration,” Georgian Math. J., 13, No. 4, 649–658 (2006).

    Article  MathSciNet  Google Scholar 

  5. A. Björner, “Posets, regular CW complexes and Bruhat order,” European J. Combin., 5, No. 1, 7–16 (1984).

    Article  MathSciNet  Google Scholar 

  6. E. H. Brown, Jr., “Twisted tensor products. I,” Ann. Math. (2), 69, 223–246 (1959).

    Article  MathSciNet  Google Scholar 

  7. M. J. Catanzaro, V. Y. Chernyak, and J. R. Klein, “Kirchhoff’s theorems in higher dimensions and Reidemeister torsion,” ar**v:1206.6783.

  8. M. J. Catanzaro, V. Y. Chernyak, and J. R. Klein, “A higher Boltzmann distribution,” ar**v:1506.06775.

  9. M. J. Catanzaro, V. Y. Chernyak, and J. R. Klein, “A higher Boltzmann distribution,” J. Appl. Comput. Topol., 1, No. 2, 215–240 (2017).

    Article  MathSciNet  Google Scholar 

  10. Sh. Chern and E. H. Spanier, “The homology structure of sphere bundles,” Proc. Nat. Acad. Sci. USA, 36, 248–255 (1950).

    Article  MathSciNet  Google Scholar 

  11. M. M. Cohen, “Simplicial structures and transverse cellularity,” Ann. Math. (2), 85, 218–245 (1967).

    Article  MathSciNet  Google Scholar 

  12. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators, With Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin (1987).

  13. A. Dress, “Zur Spektralsequenz von Faserungen,” Invent. Math., 3, 172–178 (1967).

    Article  MathSciNet  Google Scholar 

  14. A. M. Duval, C. J. Klivans, and J. L. Martin, “Cuts and flows of cell complexes,” J. Algebraic Combin., 41, No. 4, 969–999 (2015).

    Article  MathSciNet  Google Scholar 

  15. E. Fadell and W. Hurewicz, “On the structure of higher differential operators in spectral sequences,” Ann. Math. (2), 68, 314–347 (1958).

    Article  MathSciNet  Google Scholar 

  16. A. A. Gaĭfullin, “Computation of characteristic classes of a manifold from its triangulation,” Uspekhi Mat. Nauk, 60, No. 4(364), 37–66 (2005).

  17. I. M. Gelfand and R. D. MacPherson, “A combinatorial formula for the Pontrjagin classes,” Bull. Amer. Math. Soc. New Ser., 26, No. 2, 304–309 (1992).

    Article  MathSciNet  Google Scholar 

  18. V. K. A. M. Gugenheim, “On a perturbation theory for the homology of the loop-space,” J. Pure Appl. Algebra, 25, 197–205 (1982).

    Article  MathSciNet  Google Scholar 

  19. V. K. A. M. Gugenheim and L. A. Lambe, “Perturbation theory in differential homological algebra. I,” Illinois J. Math., 33, No. 4, 566–582 (1989).

    Article  MathSciNet  Google Scholar 

  20. G. Hirsch, “Sur les groupes d’homologie des espaces fibr´es,” Bull. Soc. Math. Belg., 6, 79–96 (1954).

    MATH  Google Scholar 

  21. K. Igusa, “Combinatorial Miller–Morita–Mumford classes and Witten cycles,” Algebr. Geom. Topol., 4, 473–520 (2004).

    Article  MathSciNet  Google Scholar 

  22. K. Igusa, “Twisting cochains and higher torsion,” J. Homotopy Relat. Struct., 6, No. 2, 213–238 (2011).

    MathSciNet  MATH  Google Scholar 

  23. T. V. Kadeishvili, “The predifferential of a twisted product,” Russian Math. Surveys, 41, No. 6, 135–147 (1986).

    Article  Google Scholar 

  24. N. Levitt, “The Euler characteristic is the unique locally determined numerical homotopy invariant of finite complexes,” Discrete Comput. Geom., 7, No. 1, 59–67 (1992).

    Article  MathSciNet  Google Scholar 

  25. A. Lundell and S. Weingram, The Topology of CW-Complexes, Van Nostrand Reinhold, New York (1969).

    Book  Google Scholar 

  26. R. Lyons, “Random complexes and 2-Betti numbers,” J. Topol. Anal., 1, No. 2, 153–175 (2009).

    Article  MathSciNet  Google Scholar 

  27. N. E. Mnëv, “Combinatorial piecewise-linear Steenrod fiber bundles and the fragmentation of a fiberwise homeomorphism,” Zap. Nauchn. Semin. POMI, 344, 56–173 (2007).

    MathSciNet  Google Scholar 

  28. N. Mnev and G. Sharygin, “On local combinatorial formulas for Chern classes of a triangulated circle bundle,” J. Math. Sci., 224, No. 2, 304–327 (2017).

    Article  MathSciNet  Google Scholar 

  29. L. I. Nicolaescu, The Reidemeister Torsion of 3-Manifolds, Walter de Gruyter, Berlin (2003).

    Book  Google Scholar 

  30. M. Roček and R. M. Williams, “On the Euler characteristic for piecewise linear manifolds,” Phys. Lett. B, 273, Nos. 1–2, 95–99 (1991).

    Article  MathSciNet  Google Scholar 

  31. C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, Berlin (1972).

    Book  Google Scholar 

  32. N. E. Steenrod, “Cohomology invariants of map**s,” Ann. Math. (2), 50, 954–988 (1949).

    Article  MathSciNet  Google Scholar 

  33. R. Thom, “Espaces fibrés en sphères et carrés de Steenrod,” Ann. Sci. École Norm. Sup. (3), 69, 109–182 (1952).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Mnëv.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 507, 2021, pp. 35–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnëv, N.E. A Note on a Local Combinatorial Formula for the Euler Class of a PL Spherical Fiber Bundle. J Math Sci 261, 614–629 (2022). https://doi.org/10.1007/s10958-022-05776-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-05776-1

Navigation