Log in

Existence of a Renormalized Solution of a Parabolic Problem in Anisotropic Sobolev–Orlicz Spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider the first mixed problem for a certain class of anisotropic parabolic equations of the form \( {\left(\beta \left(x,u\right)\right)}_t^{\prime }-\operatorname{div}\kern0.5em a\left(t,x,u,\nabla u\right)-b\left(t,x,u,\nabla u\right)=u \) where μ is a measure and the coefficients contain nonpower nonlinearities in the cylindrical domain DT = (0, T)×Ω, where Ω n is a bounded domain. We prove the existence of a renormalized solution of the problem for gt = 0 and a function β(x, r), which increases with respect to r and satisfies the Carath´eodory condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Alkhutov and V. V. Zhikov, “Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent,” Mat. Sb., 205, No. 3, 3–14 (2014).

    Article  MathSciNet  Google Scholar 

  2. H. W. Alt and S. Luckhaus, “Quasilinear elliptic-parabolic differential equations,” Math. Z., 183, No. 3, 311–341 (1983).

    Article  MathSciNet  Google Scholar 

  3. E. Azroul, H. Redwane, and M. Rhoudaf, “Existence of solutions for nonlinear parabolic systems via weak convergence of truncations,” Electron. J. Differ. Equations, 68, 1–18 (2010).

    MathSciNet  MATH  Google Scholar 

  4. M. Bendahmane, P. Wittbold, and A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 data,” J. Differ. Equations, 249, No. 6, 1483– 1515 (2010).

    Article  Google Scholar 

  5. P. Benilan, L. Boccardo, T. Galluet, M. Pierre, and J. L. Vazquez, “An L1-theory of existence and Uniqueness of solutions of nonlinear elliptic equations,” Ann. Scu. Norm. Super. Pisa. Cl. Sci., 22, No. 2, 241–273 (1995).

    Google Scholar 

  6. P. Benilan, H. Brezis, and M. Crandall, “A semilinear elliptic equation in L1 (RN),” Ann. Sco. Norm. Super. Pisa. Cl. Sci., No. 2, 523–555 (1975).

    MATH  Google Scholar 

  7. D. Blanchard and F. Murat, “Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness,” Proc. Roy. Soc. Edinburgh. Sect. A, 127, No. 6, 1137–1152 (1997).

    Article  MathSciNet  Google Scholar 

  8. H. Brezis, “Nonlinear elliptic equations involving measures,” in: Contributions to Nonlinear Partial Differential Equations. Madrid, 1981, Res. Notes Math., Pitman, Boston (1983), pp. 82–89.

  9. J. Carrillo and P. Wittbold, “Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems,” J. Differ. Equations, 156, No. 1, 93–121 (1999).

    Article  MathSciNet  Google Scholar 

  10. G. Dal Maso, F. Murat, L. Orsina, and A. Prignet, “Renormalized solutions for elliptic equations with general measure data,” Ann. Scu. Norm. Super. Pisa. Cl. Sci., 28, No. 4, 741–808 (1999).

    MathSciNet  MATH  Google Scholar 

  11. R. J. Di Perna and P. L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability,” Ann. Math., 130, No. 2, 321–366 (1989).

    Article  MathSciNet  Google Scholar 

  12. J. Droniou, A. Porretta, and A. Prignet, “Parabolic capacity and soft measures for nonlinear equations,” Potential Anal., 19, No. 2, 99–161 (2003).

    Article  MathSciNet  Google Scholar 

  13. N. Dunford and J. T. Schwartz, Linear Operators. General Theory, Interscience, New York–London (1958).

    MATH  Google Scholar 

  14. L. Dupaigne, A. C. Ponce, and A. Porretta, “Elliptic equations with vertical asymptotes in the nonlinear term,” J. Anal. Math., 98, No. 1, 349–396 (2006).

    Article  MathSciNet  Google Scholar 

  15. J. P. Gossez, “Some approximation properties in Orlicz–Sobolev spaces,” Stud. Math., 74, No. 1, 17–24 (1982).

    Article  MathSciNet  Google Scholar 

  16. J. P. Gossez, “Nonlinear elliptic boundary-value problems for rapidly or slowly increasing coefficients,” Trans. Am. Math. Soc., 190, No. 4, 163–205 (1974).

    Article  MathSciNet  Google Scholar 

  17. P. Gwiazda, P. Wittbold, A. Wroblewska-Kaminskac, and A. Zimmermann, “Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces,” Nonlin. Anal., 129, No. 6, 1–36 (2015).

    Article  MathSciNet  Google Scholar 

  18. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlng, Berlin–Heidelberg–New York (1965).

    Book  Google Scholar 

  19. N. Igbida, S. Ouaro, and S. Soma, “Elliptic problem involving diffuse measures data,” J. Differ. Equations, 253, No. 12, 3159–3183 (2012).

    Article  MathSciNet  Google Scholar 

  20. J. Kačur, “On a solution of degenerate elliptic-parabolic systems in Orlicz–Sobolev spaces, I,” Math. Z., 203, No. 1, 153–171 (1990).

    Article  MathSciNet  Google Scholar 

  21. L. M. Kozhevnikova, “On entropy solutions of anisotropic elliptic equations with variable nonlinearity exponents in unbounded domains,” Sovr. Mat. Fundam. Napr., 63, No. 3, 475–493 (2017).

    MathSciNet  Google Scholar 

  22. M. A. Krasnosel’sky and Ya. B. Rutitsky, Convex Functions and Orlicz Spaces [Russian], GIFML, Moscow (1958).

  23. S. N. Kruzhkov, “First-order quasilinear equations with many independent variables,” Mat. Sb., 81 (123), No. 2, 228–255 (1970).

  24. R. Landes, “On the existence of weak solutions for quasilinear parabolic initial-boundary value problems,” Proc. Roy. Soc. Edinburgh Sect. A, 89, No. 3–4, 217–237 (1981).

    Article  MathSciNet  Google Scholar 

  25. G. I. Laptev, “Weak solutions of second-order quasilinear parabolic equations with double nonlinearity,” Mat. Sb., 188, No. 9, 83–112 (1997).

    Article  MathSciNet  Google Scholar 

  26. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaire, Dunod–Gauthier-Villars, Paris (1969).

    MATH  Google Scholar 

  27. F. Kh. Mukminov, “Uniqueness of a renormalized solution of the first mixed problem for an anisotropic parabolic equation with variable nonlinearities,” Mat. Sb., 208, No. 8, 83–112 (2017).

    Article  Google Scholar 

  28. L. Orsina and A. Prignet, “Non-existence of solutions for some nonlinear elliptic equations involving measures,” Proc. Roy. Soc. Edinburgh. Sect. A, 130, No. 1, 167–187 (2000).

    Article  MathSciNet  Google Scholar 

  29. F. Petitta, “A nonexistence result for nonlinear parabolic equations with singular measures as data,” Proc. Roy. Soc. Edinburgh. Sect. A., 139, No. 2, 381–392 (2009).

    Article  MathSciNet  Google Scholar 

  30. A. Prignet, “Existence and uniqueness of entropy solutions of parabolic problems with L1 data,” Nonlin. Anal. Theor. Math. Appl., 28, No. 12, 1943–1954 (1997).

    Article  MathSciNet  Google Scholar 

  31. H. Redwane, “Existence results for a class of nonlinear parabolic equations in Orlicz spaces,” Electron. J. Qualit. Theory Differ. Equations, No. 2, 1–19 (2010).

    MathSciNet  MATH  Google Scholar 

  32. Ch. Zhang and Sh. Zhou, “Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data,” J. Differ. Equations, 248, No. 6, 1376–1400 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vorob’yov.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 163, Differential Equations, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorob’yov, N.A., Mukminov, F.K. Existence of a Renormalized Solution of a Parabolic Problem in Anisotropic Sobolev–Orlicz Spaces. J Math Sci 258, 37–64 (2021). https://doi.org/10.1007/s10958-021-05535-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05535-8

Keywords and phrases

AMS Subject Classification

Navigation