Log in

The Riemann–Hilbert Boundary Value Problem for the Moisil–Theodoresco System

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider the Riemann–Hilbert boundary value problem for the Moisil–Theodoresco system in a multiply connected domain bounded by a smooth surface in the three–dimensional space. We obtain a criterion for the Fredholm property of the problem and a formula for its index æ = m − s, where s is the number of connected components of the boundary and m is the order of the first de Rham cogomology group of the domain. The study is based on the integral representation of a general solution to the Moisil–Theodoresco system and an explicit description of its kernel and cokernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gr. C. Moisil and N. Theodoresco, “Fonctions holomorphes dans l’espace,” Mathematica 5, 142–153 (1931).

    MATH  Google Scholar 

  2. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series. Princeton Univ. Press, Princeton, NJ (1971).

    MATH  Google Scholar 

  3. M. Shapiro and N. Vasilevski, “Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems. I: ψ-hyperholomorphic functions theory,” Complex Variables, Theory Appl. 27, 17–44 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Shapiro and N. Vasilevski, “Quaternionic hyperholomorphic functions, singular integral operators and boundary value problems, II: Algebras of singular integral operators and Riemann type boundary value problems,” Complex Variables, Theory Appl. 27, 67–96 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Gürlebeck, K. Habetha, and W. Sprössig, Holomorphic Functions in the Plane and n-Dimensional Space, Birkhäuser, Basel etc. (2008).

  6. A. V. Bitsadze, “Spatial analog of Cauchy type integral and some its applications” [in Russian], Izv. AN SSST, Ser, Mat. 17, No. 6, 525–538 (1953).

  7. A. V. Bitsadze, Boundary Value Problems for Second Order Elliptic Equations, North-Holland, Amsterdam (1968).

    MATH  Google Scholar 

  8. V. A. Polunin and A. P. Soldatov, “Three-dimensional analog of the Cauchy type integral,” Differ. Equ. 47, No. 3, 363–372 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Gürlebeck and W. Sp’ossig, Quaternionic Analysis and Elliptic Boundary Value Problems, Academie-Verlag, Berlin (1989).

    Google Scholar 

  10. A. P. Soldatov, “Singular integral operators and boundary valued problems. I” [in Russian], Sovrem. Mat., Fundam. Napravl. 63, No. 1, 1–189 (2017).

  11. V. I. Shevchenko, “Some boundary value problems for a holomorphic vector” [in Russian], Mat. Fiz. 8, 172–187 (1970).

  12. V. I. Shevchenko, “On Hilbert’s problem for a holomorphic vector in a many-dimensional space” [in Russian], In: Differential and Integral Equations. Boundary Value Problems. Collect. Articles, Dedic. Mem. I. N. Vekua, pp. 279–291, Tbilisi (1979).

  13. Y. Yao, “The Riemann boundary value problem for the Moisil–Theodoresco system in Chinese], J. Sichuan Norm. Univ., Nat. Sci. 29, No. 2, 188–191 (2006).

  14. P. Yang, “The Riemann–Hilbert boundary value problem for the Moisil–Theodoresco system,” Acta Math. Sci., Ser. A, Chin. Ed. 26, No. 7, 1057–1063 (2006).

    MathSciNet  MATH  Google Scholar 

  15. A. Alsaedy and N. Tarkhanov, “The method of Fischer–Riesz equations for elliptic boundary value problems,” J. Complex Anal. 2003, Article ID 486934 (2013).

  16. R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer, New York etc. (1982).

  17. A. Hatcher, Algebraic Topology, Cambridge Univ. Press, Cambridge (2002).

    MATH  Google Scholar 

  18. V. A. Polunin and A. P. Soldatov, “Integral representation of solutions of the Moisil–Theodorescu system in multiply connected domains,” Dokl. Math. 96, No. 1, 358–361 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. A. Polunin, A. P. Soldatov, “Riemann–Hilbert problem for the Moisil–Teodorescu system in multiply connected domains,” EJDE 2016, No. 310, 1–5 (2016).

    MATH  Google Scholar 

  20. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin etc. (1994).

  21. S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,” Commun. Pure Appl. Math. 17, 35–92 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  22. Ya. Roitberg, Elliptic Boundary Value Problems in the Spaces of Distributions, Kluwer Acad., Dordrecht (1996).

  23. Ya. A. Roitberg and Z. G. Sheftel’, “A homeomorphism theorem for elliptic systems and its applications,” Math. USSR-Sb. 78, No. 3, 439–465 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  24. R. S. Palais, Seminar on the Atiyah–Singer Index Theorem, Princeton Univ. Press, Princeton, NJ (1965).

    MATH  Google Scholar 

  25. S. G. Mikhllin, S. Prössdorf, Singular Integral Operators, Springer, Berlin etc. (1986).

  26. W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ. Press, Princeton, NJ (1941).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Soldatov.

Additional information

Translated from Problemy Matematicheskogo Analiza97, 2019, pp. 129-153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, A.P. The Riemann–Hilbert Boundary Value Problem for the Moisil–Theodoresco System. J Math Sci 239, 381–411 (2019). https://doi.org/10.1007/s10958-019-04312-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04312-y

Navigation